79 01 12 004 400 254 1 Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | REPORT DOCUMENTAT | ION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |--|--|--| | REPORT NUMBER | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | A FGL-TR-78-0241 | el destrouero resultita | neo syllaments he feetlamens | | TITLE (and Subtitle) | | 5. TYPE OF REPORT & PERIOD COVERE | | POTENTIAL COEFFICIENT DE | TERMINATIONS | Scientific. Interim | | FROM 10° TERRESTRIAL GRA | | Scientific Report No. 19' | | MEANS OF COLLOCATION | | 6. PERFORMING ORG. REPORT NUMBER
Dept. of Geod. Sci. No. 274 | | AUTHOR(s) | | 8. CONTRACT OR GRANT NUMBER(s) | | | | | | Lars Sjöberg | | F19628-76-C-0010 | | PERFORMING ORGANIZATION NAME AND ADD | DRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Department of Geodetic Science | | | | The Ohio State University - 195 | 8 Neil Avenue | 62101 F | | Columbus, Ohio 43210 | | 760003 AG | | . CONTROLLING OFFICE NAME AND ADDRESS | | 12. REPORT DATE | | Air Force Geophysics Laborato | | September 1978 | | Hanscom AFB, Massachusetts | | 42 | | Contract Monitor: Bela Szabo/1. MONITORING AGENCY NAME & ADDRESS(II d | ifferent from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | | Unclassified | | | 15a. DECLASSIFICATION/DOWNGRADING | | | | | | | A - Approved for public release: | distribution unlimited | | | A-Approved for public release; | | | | | | | | A-Approved for public release; | | | | A-Approved for public release; DISTRIBUTION STATEMENT (of the abatract of | ntered in Block 20, if different fro | m Report) | | A-Approved for public release; DISTRIBUTION STATEMENT (of the ebetract of | ntered in Block 20, if different fro | m Report) | | A-Approved for public release; DISTRIBUTION STATEMENT (of the ebetract of | east squares collocation | on. | | A-Approved for public release; DISTRIBUTION STATEMENT (of the ebetract of | east squares collocation | on. | | A-Approved for public release; DISTRIBUTION STATEMENT (of the abstract of | east squares collocation are scollocation is use anomalies. The resulegrees (n ≤ 12) the diffin 6%; for higher degralocation do not change | on. d to estimate geopotential It is compared to the solutions derences between the two types ees the differences increase, more than 4% when elevation | SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) (10%) were found among all solutions. The computations by collocation were at least 30 times more time consuming than the integrations. In order to reduce the computation time in applying the former method for larger systems (such as 5deg anomalies), an alternative computation procedure is outlined. with a principal displacement ## Foreword This report was prepared by Lars Sjöberg, Research Associate, Department of Geodetic Science, The Ohio State University, under Air Force Contract No. F19628-76-C-0010, The Ohio State University Research Foundation Project No. 710335, Project supervisor, Richard H. Rapp. The contract covering this research is administered by the Air Force Geophysics Laboratory, L. G. Hanscom Air Force Base, Massachusetts, with Mr. Bela Szabo, Contract Monitor. ## Acknowledgments I am grateful to Dr. Richard H. Rapp for the opportunity to make this investigation and for his helpful suggestions and guidance during the course of the research. ## Table of Contents | Foreword ii | |-------------------------------| | Acknowledgments | | 1. Introduction | | 2. Covariance Functions | | 3. Application of Collocation | | 4. Error Analysis | | 5. Computations 10 | | 6. An Extended View | | 7. Conclusions | | References 23 | | Appendix | | Tables | THE RESERVE AND ADDRESS OF THE PARTY ### 1. Introduction The gravity potential of the earth (W) can be decomposed into the gravitational potential (V) and the rotational potential (Φ): $$W = V + \Phi$$ As V is harmonic outside the surface of the earth, it can be expanded into a series of spherical harmonics in this region (we assume that the series is convergent): $$(1.1) V = \frac{GM}{r} \left\{ 1 + \sum_{n=2}^{\infty} \left(\frac{a}{r} \right)^n \sum_{m=0}^{n} \left(\overline{C}_{nm} \cos m \lambda + \overline{S}_{nm} \sin m \lambda \right) \overline{P}_{nm} (\sin \varphi) \right\}$$ where G Newton's constant of gravitation M mass of the earth (r, φ, λ) geocentric spherical coordinates of the computation point Pna () normalized associated Legendre polynomial c na, S na fully normalized spherical harmonic potential coefficients a equatorial radius of the defined earth ellipsoid In the study of the geopotential field it is most convenient to subtract a selected reference field: $$U = \frac{GM}{r} \left\{ 1 + \hat{C}_{30} \left(\frac{a}{r} \right)^{2} \overline{P}_{20} \left(\sin \varphi \right) + \hat{C}_{40} \left(\frac{a}{r} \right)^{4} \overline{P}_{40} \left(\sin \varphi \right) \right\} + \Phi$$ where C_{20} and C_{40} are selected coefficients, from the potential W. The residual potential (T) is the so called disturbing potential: (1.2) $$T = W - U = \frac{GM}{a} \sum_{n=2}^{\infty} \left(\frac{a}{r}\right)^{n+1} \sum_{n=0}^{n} \left(\overline{C}_{nn} \cos m \lambda + \overline{S}_{nn} \sin m \lambda\right) \overline{P}_{nn} \left(\sin \varphi\right)$$ where $$\overline{C}_{80} = \overline{C}_{20} - \hat{C}_{20}$$ $$\overline{C}_{40} = \overline{C}_{40} - \hat{C}_{40}$$ $$\overline{C}_{nm} = \overline{\overline{C}}_{nm}, \overline{S}_{nm} = \overline{\overline{S}}_{nm} \quad \text{for } (n,m) \neq (2,0) \text{ or } (4,0)$$ Now, by inserting (1.2) into the spherical approximation of "the fundamental boundary condition" (Heiskanen and Moritz, 1967, p. 88): $$\Delta g = -\frac{\partial T}{\partial r} - \frac{2T}{r}$$ we obtain the gravity anomaly (Δg) in terms of the potential coefficients: (1.3) $$\Delta g = \gamma \sum_{n=2}^{\infty} (n-1) \sum_{m=0}^{n} (\overline{C}_{nm} \cos m \lambda + \overline{S}_{nm} \sin m \lambda) \left(\frac{a}{r}\right)^{n+2} \overline{P}_{nm} (\sin \varphi)$$ where $$\gamma = GM/a^2$$ It is obvious from formula (1.1) that the coefficients $\overline{\overline{C}}_{nm}$ and $\overline{\overline{S}}_{nm}$ are dependent on the choice of a, but that $\overline{\overline{C}}_{nm}$ and $\overline{\overline{S}}_{nm}$ and are invariant quantities. On the other hand, for a fixed γ the gravity anomaly in (1.3) is independent of the choice of a, whenever: $$\overline{C}_{nm} a^{n+2}$$ and $\overline{S}_{nm} a^{n+2}$ are invariant. This means that for two different a-values (a_1, a_2) and $\gamma = constant$ the gravity anomalies in (1.3) are the same, if (with obvious notations): (1.4) $$\left\{\frac{\overline{C}_{nn}}{\overline{S}_{nn}}\right\}_{a_1} = \left(\frac{a_2}{\overline{a_1}}\right)^{n+2} \left\{\frac{\overline{C}_{nn}}{\overline{S}_{nn}}\right\}_{a_2}$$ This relation will be useful in the following application of estimating the coefficients $\overline{C}_{n\,m}$ and \overline{S}_{nm} . The state of s #### 2. Covariance Functions Suppose that the gravity field is harmonic, homogeneous and isotropic. Then the spatial covariance function of the point free-air gravity anomalies Δg_1 and Δg_1 is given by (Moritz, 1972, p. 89): (2.1) $$c_{ij} = cov (\Delta g_i, \Delta g_j) = \sum_{n=2}^{\infty} c_n s^{n+2} P_n (cos \psi_{ij})$$ where $s = r_8^2/r_1 r_j$ $r_8 = radius$ of the Bjerhammar sphere $r_k = r_m + h_k$, k = i, j $r_m = radius$ of mean sea level h_1 , $h_j =$ elevations of points P_1 and P_j $c_m =$ degree variances of Δg The corresponding covariance function of the mean gravity anomalies
$\Delta \bar{g}_i$ and $\Delta \bar{g}_j$, where: $$\overline{\Delta g}_k = \frac{1}{\Delta \sigma_k} \iint_{\Delta \sigma_k} \Delta g \, d\sigma ; \quad k = i, j$$ is given by (2.2) $$\overline{\overline{c}}_{ij} = \operatorname{cov}(\Delta \overline{g}_{i}, \Delta \overline{g}_{j}) = \frac{1}{\Delta \sigma_{i} \Delta \sigma_{j}} \iint_{\Delta \sigma_{i}} \int_{\Delta \sigma_{j}} e_{ij} d\sigma d\sigma$$ In the same way we obtain the following cross-covariance function between Δg_i and $\overline{\Delta g}_j$: (2.3) $$\overline{c}_{ij} = \frac{1}{\Delta \sigma_j} \iint_{\Delta \sigma_j} c_{ij} d\sigma$$ In these formulae $\Delta \sigma$ is a part of the unit sphere σ . For small regions $\Delta \sigma_1$ and $\Delta \sigma_2$ we may, without loss of significance, assume that r_1 and r_2 are constants. Then (2.2) and (2.3) become: and a second of the second or the second (2.2') $$\overline{\overline{c}}_{ij} = \sum_{n=2}^{\infty} c_n s^{n+2} \frac{1}{\Delta \sigma_i \Delta \sigma_j} \iiint_{\Delta \sigma_i \Delta \sigma_j} P_n (\cos \psi_{ij}) d\sigma d\sigma$$ The common way to determine the spherical harmonic coefficients of the earth's gravity field from terrestrial data is by means of integration of mean gravity anomalies over a mean earth sphere. See for example Rapp (1977a). Due to the orthogonal functions the coefficients are obtained directly in the integrations. Rigorously, it is required that the gravity anomalies are located on the sphere of integration, but in reality, due to the variation of the elevation of the terrain, this is not the case. This terrain deviation can be corrected for by adding the Molodenshy G_1 term to the mean anomalies. Pellinen (1962) has indicated that the neglect of this term can cause errors in the low degree coefficients of 10 to 20 percent. Numerical results of Rapp (1977a) agree with this error estimate, but the results were based on a number of assumptions relating the G_1 term to the terrain correction. In practice, the computation of the Molodenshy correction term for the terrain may be very difficult and laborious, especially in areas with rapidly varying topography. It is therefore of interest to find a technique for the determination of the potential coefficients that does not include the computation of the G_1 terms, yet retains the rigor of that procedure. One such method was given by Rapp (1977b), where least-squares collocation was used for an upward continuation of the terrestrial mean anomalies to a bounding sphere. Once the anomalies are given at the sphere the integration can be applied strictly for the determination of the potential coefficients. Rapp (1977b) found that the neglect of G_1 caused errors less than 7.5% for harmonics up to degree 40. In the present study the idea is to estimate the potential coefficients directly by applying least-squares collocation to the terrestrial mean gravity anomalies. The integration is then taken care of in the cross-covariance matrix. The advantage of using such a method is that the terrain correction is easily included and that the various accuracies of the mean anomalies can be taken into account, which is not obvious in the integration approach. In collocation a physical quantity V may be predicted from a vector of (mean) gravity anomalies Δg by the relation: (1.5) $$V = c_V^T (G + D)^{-1} \Delta g$$ where $c_v^{\dagger} = cross-covariance matrix (V, \Delta g)$ $C = auto-covariance matrix (\Delta g, \Delta g)$ D = error covariance matrix The prediction errors are estimated by (1.6) $$m_v^2 = C_0 - c_v^{\dagger} (C + D)^{-1} c_v$$ Where Co is the variance of V prior to prediction. For further details on these basic formulae see Moritz (1972). The collocation technique requires that the relevant covariance functions are known. In the next section we are going to study these functions for the present application. and (2.3') $$\overline{c}_{ij} = \sum_{n=2}^{\infty} c_n \, s^{n+2} \, \frac{1}{\Delta \sigma_j} \, \iint_{\Delta \sigma_j} P_n \left(\cos \psi_{ij}\right) \, d\sigma$$ Formulae (2.2') and (2.3') are very laborious to compute in practice due to the many numerical integrations. Approximate mean covariance functions may be obtained by using the β_n function of Meissl (1971, p. 23): $$\beta_{n} = \frac{1}{1 - \cos \psi_{0}} \frac{1}{2n+1} [P_{n-1}(\cos \psi_{0}) - P_{n+1}(\cos \psi_{0})]$$ where ψ_0 is the radius of a circular cap of area equal to the relevant block size of the mean anomalies. Then, the above covariance functions become (approximately) (cf. Figure 2 a-b): (2.2') $$\overline{\overline{c}}_{ij} = \sum_{n=2}^{\infty} c_n s^{n+2} \beta_n^2 P_n (\cos \psi_{ij})$$ and (2.3") $$\overline{\mathbf{c}}_{ij} = \sum_{n=2}^{\infty} \mathbf{c}_n \, \mathbf{s}^{n+2} \, \boldsymbol{\beta}_n \, \mathbf{P}_n \, (\cos \psi_{ij})$$ As $$\beta_n \to 0$$ as $n \to \infty$ it is usually sufficient to truncate the series (2.2") and (2.3") at a few hundred degrees (dependent upon the block size) without loss of significance. We also give the autocovariance relations between the potential coefficients. In Moritz (1970) the relations are given for the anomaly coefficients $(\overline{a}_{nm}, \overline{b}_{nm})$. As \overline{a}_{nm} and \overline{b}_{nm} are related to the potential coefficients \overline{C}_{nm} and \overline{S}_{nm} according to: $$\left\{ \frac{\overline{C}_{nm}}{\overline{S}_{nm}} \right\} = \frac{1}{\gamma (n-1)} \, \left\{ \frac{\overline{a}_{nm}}{\overline{b}_{nm}} \right\}$$ where γ is the mean gravity at sea-level, we obtain from Moritz (ibid.): (2.4) $$\operatorname{cov}(\overline{C}_{nm}, \overline{C}_{pq}) = \operatorname{cov}(\overline{S}_{nm}, \overline{S}_{pq}) = \frac{c_n}{(2n+1)(n-1)^2 \gamma^2} \delta_{np} \delta_{mq}$$ where $$\delta_{np} = \begin{cases} 1 & \text{if } n = p \\ 0 & \text{if } n \neq p \end{cases}$$ and $$\operatorname{cov}(\overline{C}_{nm}, \overline{S}_{pq}) = 0$$ in any case. The above covariance relations will be useful in our application a collocation. Finally, we like to mention that the mean covariance functions (2.2) and (2.3) can in addition, be approximated by the corresponding point covariance functions simply by increasing the radii r_1 and r_2 by a feasible constant. This type of smoothed covariance functions was discussed in Tscherning and Rapp (1974, Section 10) and Schwarz (1976, Section 7). ## 3. Application of Collocation We assume that the external gravity field of the earth may be expanded into a series of spherical harmonics at a sphere of radius R. Then we have [cf. (1.3)]: (3.1a) $$\Delta \mathbf{g}_{R} = \gamma \sum_{n=2}^{\infty} (n-1) \left(\frac{\mathbf{r}_{B}}{R}\right)^{n+2} \sum_{n=0}^{n} (\overline{\mathbf{C}}_{nm} \cos m \lambda + \overline{\mathbf{S}}_{nm} \sin m \lambda) \overline{\mathbf{P}}_{nm} (\sin \varphi)$$ where $$\gamma = GM/a^2$$ $r_B = radius of the Bjerhammar sphere$ and (3.1b) $$\left\{\frac{\overline{C}_{nm}}{\overline{S}_{nm}}\right\}_{r_B} = \frac{1}{4\pi\gamma(n-1)(r_B/R)^{n+2}} \iint_{\sigma} \Delta g_R \overline{P}_{nm} (\sin \varphi) \left\{\frac{\cos m\lambda}{\sin m\lambda}\right\} d\sigma$$ Formula (3.1b) is the basic equation we are going to use for estimating the potential coefficients. The coefficients determined by (3.1b) are independent of the choice of R. Thus by choosing R as the radius of the Brioullin sphere (bounding all the mass of the earth) we have a theoretically most attractive situation, because the series expansion (3.1a) is rigorously convergent at this sphere (cf. Sjöberg, 1977). The standard representation of the coefficients \overline{C}_{nn} and \overline{S}_{nn} in the literature is with reference to the equatorial radius of the earth (a) (and not to the Bjerhammar sphere as in (3.1b)). The conversion from (3.1b) to this representation was given in (1.4): (3.2) $$\left\{\frac{\overline{C}_{nn}}{\overline{S}_{nn}}\right\}_{a} = \left(\frac{\mathbf{r}_{\theta}}{\overline{a}}\right)^{n+2} \left\{\frac{\overline{C}_{nn}}{\overline{S}_{nn}}\right\}_{\mathbf{r}_{\theta}}$$ Theoretically, the point gravity anomaly Δg_R in (3.1a) can be estimated from a vector of mean gravity anomalies by means of formula (1.5): $$\Delta \mathbf{g}_{R} = \mathbf{c}_{R}^{T} (C + \mathbf{D})^{-1} \Delta \mathbf{g}$$ where $$c_R^{\dagger} = cross-covariance matrix (\Delta g, \Delta g)$$ The element $(c_R^{\dagger})_{i,j}$ is given by (2.3') with $r_i = R$ and $C_{i,j}$ is given by (2.2'). The error covariance matrix D can be estimated by the diagonal matrix formed by the a priori estimated mean anomaly variances. By inserting (3.3) into (3.1b) we arrive at: (3.4) $$\left\{\frac{\overline{C}_{nm}}{\overline{S}_{nm}}\right\} = \left\{\frac{c_{c}}{c_{s}}^{T}\right\} (C + D)^{-1} \underline{\Delta}g$$ where the elements of cc and cs become: (3.5) $$\left\{ \begin{pmatrix} (c_{c})_{ij} \\ (c_{s})_{ij} \end{pmatrix} = \frac{1}{4\pi\gamma(n-1)(r_{s}/R)^{n+2}} \iint_{\sigma} \overline{c}_{ij} \overline{P}_{nm} (\sin \varphi) \left\{ \begin{pmatrix} \cos m\lambda \\ \sin m\lambda \end{pmatrix} d\sigma \right\}$$ We are going to simplify (3.5) by taking into account the orthogonality of the spherical harmonics (Heiskanen and Moritz, 1967, p. 29). Using the notations: $$\left\{ \frac{\overline{R}_{nu} (\varphi, \lambda)}{\overline{S}_{nu} (\varphi, \lambda)} \right\} = \overline{P}_{nu} (\sin \varphi) \left\{ \frac{\cos m \lambda}{\sin m \lambda} \right\}$$ we obtain from (2.3'): $$(3.6) \qquad \frac{1}{4\pi} \iint \overline{\mathbf{c}}_{ij} \ \overline{\mathbf{R}}_{nn} (\varphi, \lambda) \ d\sigma = \frac{1}{\Delta \sigma_j} \iint_{\Delta \sigma_j} \sum_{n=2}^{\infty} \mathbf{c}_n \ \mathbf{s}^{n+2} \ \frac{1}{4\pi} \iint \mathbf{P}_n (\cos \psi_{ij}) \ \overline{\mathbf{R}}_{nx} (\varphi, \lambda) \ d\sigma \ d\sigma$$ $$= \frac{c_n}{2n+1} s^{n+2} \frac{1}{\Delta \sigma_j} \iint_{\Delta \sigma_j} \overline{R}_{nm} (\varphi, \lambda) d\sigma$$
A completely analogous result is obtained for \overline{S}_{nn} . Inserting the result of (3.6) into (3.5) we finally obtain: (3.7) $$\left\{ \frac{(c_{c})_{ij}}{(c_{s})_{ij}} \right\} = \frac{c_{n}}{\gamma(2n+1)(n-1)} \left(\frac{r_{s}}{r_{j}} \right)^{n+2} \frac{1}{\Delta \sigma_{j}} \iint_{\Delta \sigma_{j}} \overline{P}_{nm}(\sin \varphi) \left\{ \frac{\cos m \lambda}{\sin m \lambda} \right\} d\sigma$$ where $$\frac{1}{\Delta\sigma_{j}}\iint_{\Delta\sigma_{j}} \overline{P}_{nn} (\sin\varphi) \left\{ \frac{\cos m\lambda}{\sin m\lambda} \right\} d\sigma =$$ $$= \frac{1}{\sin\varphi_{\text{N}} - \sin\varphi_{\text{S}}} \int_{\varphi_{\text{S}}}^{\varphi_{\text{N}}} \overline{P}_{\text{nm}} \left(\sin\varphi\right) \cos\varphi \, d\varphi \quad x \left\{ \begin{array}{ll} 1 & \text{if } \cos m\lambda \text{ with } m = 0 \\ (\sin m\lambda_{\varepsilon} - \sin m\lambda_{\text{W}})/m \text{ if } \cos m\lambda \\ & \text{with } m \neq 0 \\ (\cos m\lambda_{\text{W}} - \cos m\lambda_{\varepsilon})/m \text{ if } \sin m\lambda \\ & \text{with } m \neq 0 \\ 0 & \text{if } \sin m\lambda \text{ with } m = 0 \end{array} \right.$$ φ_s , φ_N , λ_E , λ_W = geocentric latitudes and longitudes of the corners of the block $\Delta \sigma_1$ If \overline{c}_{ij} is approximated by (2.3") the formula analogous to (3.7) becomes: $$(3.7') \left\{ \frac{(c_{c})_{ij}}{(c_{s})_{ij}} \right\} = \frac{c_{n} \beta_{n}}{\gamma (2n+1)(n-1)} \left(\frac{r_{B}}{r_{j}} \right)^{n+2} \overline{P}_{nB} \left(\sin \overline{\varphi} \right) \left\{ \frac{\cos m \overline{\lambda}}{\sin m \overline{\lambda}} \right\}$$ where $$\overline{\varphi} = (\varphi_N + \varphi_S)/2$$ $$\overline{\lambda} = (\lambda_E + \lambda_W)/2 \qquad -8$$ #### 4. Error Analysis Suppose that the gravity anomaly Δg_1 used in formula (3.1b) has the error ϵ_1 . The error propagation to \overline{C}_{nm} is accordingly: $$d\,\overline{C}_{na} = \frac{1}{4\pi\,\gamma (n-1)(r_B/R)^{n+2}} \iint_{\sigma} \epsilon_i \,\overline{R}_{na} (\varphi,\lambda) \,d\,\sigma$$ and the mean square error of C nm becomes: $$(4.1) \quad \overline{\mathbf{m}}_{c_{nm}}^{2} = \mathbf{M} \left\{ d\overline{\mathbf{C}}_{nm} \right\} =$$ $$= \left\{ \frac{1}{\gamma (\mathbf{n} - 1) (\mathbf{r}_{B} / R)^{n+2}} \right\}^{2} \mathbf{M}_{i} \left\{ \mathbf{M}_{j} \left\{ \sigma_{ij} \overline{\mathbf{R}}_{nm} (\boldsymbol{\varphi}_{i}, \lambda_{i}) \overline{\mathbf{R}}_{nm} (\boldsymbol{\varphi}_{j}, \lambda_{j}) \right\} \right\}$$ where $$\sigma_{ij} = M \{ \epsilon_i \epsilon_j \} = \frac{1}{4\pi} \iint \epsilon_i \epsilon_j d\sigma$$ $$\psi_{ij} = \text{const.}$$ and $$M_{i} = \frac{1}{4\pi} \iint_{\mathbf{\sigma}} d\mathbf{\sigma}_{i}$$ As Δg of formula (3.1b) is estimated by means of collocation, σ_{ij} is the prediction covariance of that method. Moritz (1972), formula (3-39) with A=0 gives (4.2) $$\sigma_{ij} = C_{ij} - \overline{C}_i^{\dagger} (C + D)^{-1} \overline{C}_j$$ where the covariances of the right member are those defined in (3.3). Inserting (4.2) into (4.1) and carrying out the integrations, we finally obtain: (4.3a) $$\overline{m}_{c_{nn}}^{2} = \frac{c_{n}}{(2n+1)(n-1)^{2}\gamma^{2}} - c_{c}^{\dagger} (C+D)^{-1} c_{c}$$ where the elements of c_c are given by (3.7). In the same way we obtain the mean square error for \overline{S}_{nn} : (4.3b) $$\overline{m}_{s_{nn}}^{2} = \frac{c_{n}}{(2n+1)(n-1)^{2} \gamma^{2}} - c_{s}^{T} (C+D)^{-1} c_{s}$$ We notice that (4.3a-b) give exactly the error estimates we would expect in collocation with the prediction formula (3.4). Cf. formulae (1.5) and (1.6). #### 5. Computations A global coverage of 416 10° equal area free air gravity anomalies were available as input data. (These anomalies had been derived using the data of Rapp (1977a) and the methods described by Hajela (1975).) In all compute 1 covariance functions the degree variances implied by the subroutine COVA. Tscherning and Rapp (1974) were used with $c_2 = 7.5 \text{ mgal}^2$. The cross-covariance functions were computed by numerical integration according to formula (3.7) [derived from (2.3)]. However, for the auto-covariance function we felt that it was unreasonable to use the corresponding, very laborious formula (2.2). Instead, we tried two different approximate formulae. In order to save computer time the auto-covariance function for the mean anomalies for zero-elevations ($h_1 = h_3 = 0$) was stored in a table and the current values were interpolated among the tabulated values. When elevation information was included in the process the table was used only to determine the auto-covariances between ocean-block mean anomalies. The following reference data were anticipated: a = 6378140 m $\overline{C}_{20} = -484.198 \times 10^{-6}$ $\overline{C}_{40} = 0.790333 \times 10^{-6}$ f = 1/298.247 In a first test of the prediction formulae (3.4) and (4.3 a-b), the autocovariance function was approximated by the corresponding point covariance function at the best fitting elevation $(h_1 = h_1 = 142.3 \text{ km})$, cf. the end of section 2). Figure 1 indicates a fair agreement between this covariance function and the one implied by a numerical integration of the point covariance function over $10^{\circ} \times 10^{\circ}$ blocks (around the equator). However, the prediction result was poor and especially the error estimates were useless (because of negative variances!). It was apparent from the test that choice of mean covariance function was very critical, especially for the outcome of the prediction errors. Second, the auto-covariance function was computed according to formula (2.3). It was found that the series could be accepted when truncated at degree 200 (except for $\psi = 0$, where n = 200 is sufficient). The very good agreement between the series The second of the second (2.2) and the numerically integrated $10^{\circ} \times 10^{\circ}$ covariance function [formula (2.2)] is illustrated in Figure 2a-b. In Figure 2a we can distinguish between the two functions, in Figure 2b they coincide. The spherical harmonic coefficients were determined to degree 20, both with mean elevations set to 0 (Table A. 1) and with the inclusion of approximate mean elevations (Table A. 2). (The approximate elevations were computed from the 5° anomaly data reported in Rapp (1977a).) We also computed the coefficients by collocation for zero elevation and no error covariance matrix included (Table A. 3). The tabulated coefficients refer to the sphere bounding the earth ellipsoid with a = 6378140 meters (cf. formula (3.2)). For comparison we determined also the coefficients from the 10° mean anomalies by the integration method described in Rapp (ibid.) [see also formulae (6.5 a-b)]. See Table A. 4. In Table 1 we give the differences between different sets of potential coefficients. The relative mean differences give an over all view of the agreement between various sets of coefficients. It is obvious that the coefficients implied by the 5° anomalies (#251, Rapp, ibid.) agree slightly better with GEM 9 (Lerch et al., 1977) than those obtained from 10° anomalies. We also notice that the differences between the GEM 9 solutions and the solutions by collocation are less than the differences GEM 9 - Integrated 10° anomaly coefficients. In Table 2 the potential coefficient solutions from 10° mean anomalies are compared relative to Kaula's rule. For low degree coefficients the differences between collocation (1 or 2) and integration is within 6% (except for n = 3). For higher degrees the discrepancies increase. In general, the inclusion of elevation information in collocation (Coll 1) seems to change the estimates a few percent. However, note the large discrepancies (10%) for n = 3. When the noise covariance matrix is excluded in collocation (Coll 3) the solution is clearly impared when compared with GEM 9. One could expect that the collocation 3 solution should agree better with the purely integrated coefficients than the other collocation solutions. We have no explanation of why this is not the case in the computations. In Table 3 the RMS accuracy estimates by degree of the potential coefficients are compared. We notice that the accuracy estimates by collocation attenuate much slower than those implied by the integration method. Comparing the accuracy estimates of pure integration of 5° and 10° anomalies, we notice that the 10° estimates are smaller. As this result cannot agree with reality, it is likely to believe that the model used for computing the error estimates is too rough. The most obvious reason is probably that the covariances between the mean anomaly errors are disregarded. Although this is the case also in the collocation error estimates, the negative effect is less pronounced for these. Finally, we compare the computation time for the determination of the potential coefficients from 10° mean anomalies (Table 4). The integration method is at least 30 times faster than collocation. The state of s Table 1 RMS Potential Coefficient Differences by Degree x 1010 | | 251 | GEM 9- | GEM9- | GEM 9- | 251-
Int | 251-
Coll 1 | 251-
Coll 2 | Int
10°- | 10°- | Coll 2 | GEM 9- | 10° | |-----------------------------|-------|--------|-------|--------|-------------|----------------|----------------|-------------|--------|--------|--------|--------| | A I | | 10° | | | 10° | | | Coll 1 | Coll 2 | | | Coll 3 | | 2 | 2938 | 2897 | 3373 | 3514 | 522 | 603 | 801 | 206 | 1014 | 515 | 4268 | 1438 | | 3 | 2625 | 2599 | 2646 | 1834 | 267 | 1056 | 1139 | 1101 | 11117 | 1085 | 2010 | 166 | | + | 1612 | 1645 | 1741 | 1819 | 146 | 296 | 378 | 295 | 346 | 240 | 2162 | 746 | | 2 | 1473 | 1549 | 1527 | 1549 | 802 | 340 | 317 | 223 | 240 | 109 | 1563 | 182 | | 9 | 935 | 954 | 984 | 984 | 141 | 173 | 206 | 115 | 136 | 72 | 1006 | 241 | | 7 | 574 | 694 | 101 | 111 | 194 | 204 | 206 | 84 | 65 | 55 | 720 |
73 | | 80 | 592 | 546 | 523 | 516 | 145 | 194 | 200 | 100 | 97 | 35 | 529 | 123 | | 6 | 612 | 526 | 525 | 522 | 200 | 179 | 179 | 64 | 54 | 20 | 538 | 63 | | 10 | 444 | 427 | 425 | 432 | 173 | 181 | 187 | 44 | 45 | 18 | 424 | 16 | | 11 | 332 | 377 | 381 | 378 | 147 | 129 | 127 | 47 | 20 | 15 | 383 | 20 | | 12 | 254 | 249 | 256 | 259 | 124 | 124 | 126 | 32 | 29 | 13 | 258 | 47 | | 13 | 222 | 232 | 223 | 221 | 124 | 120 | 121 | 41 | 42 | 10 | 234 | 32 | | 14 | 252 | 249 | 251 | 253 | 112 | 122 | 123 | 34 | 32 | 80 | 259 | 38 | | 15 | 228 | 270 | 266 | 265 | 138 | 137 | 137 | 53 | 59 | 7 | 278 | 56 | | 16 | 202 | 236 | 220 | 221 | 118 | 116 | 1117 | 37 | 37 | 7 | 231 | 24 | | 17 | 217 | 235 | 203 | 203 | 110 | 102 | 102 | 47 | 47 | 2 | 215 | 37 | | 18 | 172 | 190 | 160 | 160 | 120 | 86 | 16 | 25 | 99 | * | 171 | 44 | | 19 | 145 | 160 | 132 | 132 | 143 | 121 | 121 | 29 | 9 | 3 | 137 | 52 | | 20 | 164 | 206 | 159 | 159 | 1115 | 85 | 84 | 02 | 70 | 3 | 166 | 61 | | Rel. Mean | | | | | | | | | | | | | | Diff. % | 68.03 | 73.40 | 68.29 | 68.15 | 31.71 | 30.09 | 30.44 | 13, 43 | 13.59 | 3,49 | 71.17 | 14.91 | | RMS Undulation | | | | | | | | | | | | | | Diff [m] | 8.72 | 8.81 | 9.20 | 8.81 | 2,03 | 2.76 | 3.00 | 2.35 | 2.62 | 2.05 | 9.88 | 3.15 | | RMS Anomaly
Diff. [meal] | 7.17 | 7.62 | 7.21 | 7.18 | 3 55 | 3 30 | 3.33 | 1.64 | 1.67 | 0.69 | 7.48 | 1.67 | Coll 1 = Collocation with Elevations, Coll 2 = Collocation without Elevations, Coll 3 = Collocation without Elevations and without Noise Covariance Matrix Table 2 Ratios between RMS Potential Coefficient Differences by Degree Implied by 10° Anomalies and $(C_{nm}, S_{nm}) = 10^{-5}/n^{2}$. Units: Percent | Degree | Int- | Int- | Int- | Coll 1 | l- | Degree | Int- | Int- | Int- | Coll 1- | |--------|--------|--------|--------|--------|----|--------|------|------|------|---------| | | Coll 1 | Coll 2 | Coll 3 | | | | | | | Coll 2 | | 2 | 3 | 4 | 6 | 2 | | 12 | 5 | 4 | 7 | 2 | | 3 | 10 | 10 | 9 | 10 | | 13 | 7 | 7 | 5 | 2 | | 4 | 5 | 6 | 12 | 4 | | 14 | 7 | 6 | 7 | 2 | | 5 | 6 | 6 | 5 | 3 | | 15 | 7 | 7 | 6 | 2 | | 6 | 4 | 5 | 9 | 3 | | 16 | 9 | 9 | 6 | 2 | | 7 | 4 | 3 | 4 | 3 | | 17 | 14 | 14 | 11 | 1 | | 8 | 6 | 6 | 8 | 2 | | 18 | 17 | 18 | 14 | 1 | | 9 | 5 | 4 | 5 | 2 | | 19 | 21 | 22 | 19 | 1 | | 10 | 4 | 4 | 8 | 2 | | 20 | 28 | 28 | 24 | 1 | | 11 | 6 | 6 | 6 | 2 | | | | | | | Coll 1 = Collocation with Elevations Coll 2 = Collocation without Elevations Coll 3 = Collocation without Elevations or Noise Covariance Matrix RMS Accuracy Estimates by Degree for Poter dial Coefficients | Degree | # 251 | Int 10° | Coll 1 | Coll 2 | |--------|-------|---------|--------|--------| | 2 | 1911 | 1722 | 2054 | 1779 | | 3 | 956 | 861 | 1674 | 2247 | | 4 | 637 | 574 | 992 | 1207 | | 5 | 478 | 430 | 691 | 807 | | 6 | 382 | 344 | 468 | 438 | | 7 | 318 | 286 | 443 | 486 | | 8 | 273 | 245 | 370 | 378 | | 9 | 239 | 214 | 341 | 360 | | 10 | 212 | 190 | 301 | 300 | | 11 | 191 | 171 | 285 | 289 | | 12 | 173 | 155 | 272 | 277 | | 13 | 159 | 142 | 266 | 266 | | 14 | 147 | 130 | 250 | 248 | | 15 | 136 | 121 | 243 | 243 | | 16 | 127 | 113 | 237 | 237 | | 17 | 119 | 105 | 231 | 231 | | 18 | 112 | 100 | 224 | 224 | | 19 | 106 | 94 | 217 | 217 | | 20 | 100 | 89 | 209 | 209 | Coll 1 = Collocation with Elevations Coll 2 = Collocation without Elevations All values multiplied by 10¹⁰ Table 4 #### Computation Times for Various Methods | Method | Degree of Expansion | CPU Time | |--|---------------------|---------------------------------| | Integration | 25 | 19 ^s | | Collocation
with Elevations | 20 | 12 ^M 13 ^s | | Collocation without Elevations (COVA in Table) | 20 | 9 [™] 21 ^s | Computer: IBM 370/168 No. of Observations: 416 ### 6. An Extended View An extension of the previous computations would be to determine the potential coefficients from 5° mean anomalies by collocation. However, as the number of observations then increases from 416 to 1654, it is no longer a standard procedure to invert the auto-covariance matrix of the system. Most computers cannot even store such a large matrix. We are going to estimate the necessary computer time as follows. In Table 5 the total number of necessary multiplications f(M) for computing the potential coefficients by collocation to degree n_0 for M observations are given. The direct method implies that the method of Cholesky is used for the inversion of the auto-covariance matrix. Let us assume that the total computer time T(M) is proportional to f(M). (We disregard the time needed for addition operations.) Then we obtain from Tables 4 and 5 for $n_0 = 20$ (no elevation information included): $$T (1654) = \frac{T (416) f (1654)}{f (416)} = 3^h 50^m$$ Thus the necessary computer time is so large that we should really consider whether it could be reduced by modifying the method. One possibility might be to determine the coefficients and their accuracy estimates according to: (6.1) $$\left\{\frac{\overline{C}_{na}}{\overline{S}_{nm}}\right\} = \left\{\frac{h_c^{\intercal}}{h_s^{\intercal}}\right\} \Delta \overline{g}$$ and (6.2) $$\left\{\frac{\overline{m}_{c}^{2}}{\overline{m}_{s}^{2}}\right\} = C_{0} - \left\{\frac{c_{c}^{\dagger} h_{c}}{c_{s}^{\dagger} h_{s}}\right\}$$ where the vectors of unknowns (hc and hs) are given by: (6.3) $${c_c \brace c_s} = (C + D) {h_c \brace h_s}$$ For each coefficient to be determined, the weights (h_c or h_s) can be computed iteratively by the following formula (cf. Miller, 1974): (6.4) $$h^{(\nu+1)} = h^{(\nu)} + \beta \{c - (C+D) h^{(\nu)}\}$$ where $0 < \beta < 2/\lambda_{max}$ λ_{max} = maximum eigen value of C + D ν = iterative step: 0, 1, 2, ... M = number of observations (mean anomalies) The starting value $h^{(0)}$ for the iteration is most conveniently given in the spherical approximation. By assuming that all mean anomalies are located on the mean earth sphere of radius r_n we arrive at the following formula from (3.1b) after replacing Δg and \overline{C}_{nn} by $\Delta \overline{g}$ and $\beta_n \overline{C}_{nn}$, respectively [cf. Rapp, 1977a, formula (30)]: (6.5a) $$\overline{C}_{nm} = \sum_{k=1}^{M} h_{k}^{(0)} \Delta \overline{g}_{k}$$ where (6.5b) $$h_{k}^{(0)} = \frac{1}{4\pi\gamma\beta_{n}(r_{B}/r_{m})^{n+2}(n-1)} \iint_{\Delta\sigma_{k}} \overline{P}_{nm}(\sin\varphi) \cos m\lambda d\sigma$$ Substituting $\cos \underline{m} \lambda$ under the integral by $\sin \underline{m} \lambda$ we obtain the weights $(h_k^{(\circ)})$ for and coefficients \overline{S}_{nm} in (6.5b) and (6.5a), respectively. Even simpler approximations are obtained for: (6.6) $$h_{k}^{(0)} = \left(\frac{r_{m}}{r_{B}}\right)^{n+2} \overline{P}_{nm} \left(\sin \overline{\varphi}\right) \left\{\frac{\cos m \overline{\lambda}}{\sin m \overline{\lambda}}\right\} \Delta \sigma_{k} / [4\pi \gamma (n-1)]$$ which formula is given from (6.5b) by the approximation: $$\frac{1}{\Delta\sigma_{k}} \iint_{\Delta\sigma_{k}} \overline{P}_{\text{nm}} \left(\sin \phi \right) \, \left\{ \begin{matrix} \cos m \lambda \\ \sin m \lambda \end{matrix} \right\} \, \, d\sigma \, \approx \, \, \boldsymbol{\beta}_{n} \, \, \overline{P}_{\text{nm}} \left(\sin \overline{\phi} \right) \, \left\{ \begin{matrix} \cos m \overline{\lambda} \\ \sin m \overline{\lambda} \end{matrix} \right\}$$ where $\overline{\varphi}$ and $\overline{\lambda}$ are given in (3.7). As the elevation of the highest mountain is less than 0.2% of the mean earth radius, we can expect that the iteration error in (6.4) is insignificant after a few iterations. Again, it should be emphasized that the spherical harmonic coefficients so determined refer to the Bjerhammar sphere (of radius r_B) and should be multiplied by $(r_B/a)^{n+2}$ in order to be consistant with other coefficient determinations, which usually refer to the sphere of radius a = 6378.140 km. In the approximate formula (6.5b) and (6.6) we have disregarded the noise covariance function D. When considering the noise covariance function: $$d(P,Q) = \sum_{n=2}^{\infty} d_n \beta_n^2 (r_B^2/r_P r_Q)^{n+2} P_n (\cos \psi_{PQ})$$ the following weight function can be derived for the spherical case [see the Appendix, formula (A.9)]: (6.7) $$h_{k}^{(o)} = \left(\frac{\mathbf{r}_{n}}{\mathbf{r}_{0}}\right)^{n+2} \frac{\mathbf{c}_{n}}{\mathbf{c}_{n} + \mathbf{d}_{n}} \overline{\mathbf{P}}_{nm} \left(\sin \varphi\right) \left\{\frac{\cos m \overline{\lambda}}{\sin m \overline{\lambda}}\right\} \Delta \sigma_{k} / 4\pi \gamma (n-1)$$ In the same way, if we assume that the errors between the blocks are uncorrelated, the following weight function can be derived [formula (A.11)]: (6.8) $$h_{k}^{(0)} = \frac{\Delta \sigma_{k}}{\gamma (n-1)4\pi} \left(\frac{r_{\theta}}{r_{m}}\right)^{n+2} \frac{c_{n} \beta_{n}^{2}}{c_{n} \beta_{n}^{2} \left(\frac{r_{\theta}}{r_{m}}\right)^{2(n+2)} + (2n+1)\epsilon_{k}^{2}} \overline{P}_{nm} (\sin \overline{\varphi}_{k}) \left\{\frac{\cos m \overline{\lambda}}{\sin m \overline{\lambda}}\right\}$$ where $\overline{\epsilon}_{k}^{2}$ = estimated mean square error of the observation in block k. By using the iterative formula (6.4) we avoid the inversion of the auto-covariance matrix. Formula (6.5) is theoretically attractive in $h^{(0)}$, because it implies that the iterative collocation is carried out with the solution of the integration method as the original step. Finally, we compare the number of necessary matrix ℓ erations for computing the coefficients and their accuracy estimates by direct collocation [formulae (3.4) and (4.3a-b)] and the proposed iterative method [formulae (6.1), (6.2) and (6.3)]. In the direct method the computations of the matrix inverse and the accuracy estimates are the most laborious operations. For the comparison we assume that $h^{(0)}$ of (6.4) is a priori given and that ν_0 steps are necessary in the iterative method. The numbers of necessary operations for a
determination of the accuracy estimates to degree n_0 [i.e. for $(n_0+1)^2$ coefficients] are summarized in Table 5 (the direct method in accordance with Westlake, 1968, Table 7.1). Table 5 Number of Necessary Matrix Operations to Compute Accuracy Estimates to Degree n_0 | Operation | Direct Method
(Cholesky) | Iterative Method [formulae (6.2) and (6.3)] | |----------------|--|---| | Addition | $M^3 - 2M^2 + M + (M^2 + M)(n_0 + 1)^2$ | $\{(M+1) M\nu_0 + M\} (n_0 + 1)^2$ | | Multiplication | $\frac{1}{2}$ M ³ + $\frac{3}{2}$ M ² - M + 2M ² (n _o +1) ² | $(M^2 \nu_0 + M)(n_0 + 1)^2$ | ν_0 = number of iterative steps M = number of mean anomalies As the multiplications are the most time-consuming operations, we limit the following comparison to those figures. Then we obtain from the table that the iterative method is more efficient whenever: $$(M \nu_0 + 1) M (n_0 + 1)^2 < \frac{1}{2} M^3 + \frac{3}{2} M^2 - M + 2 M^2 (n_0 + 1)^2$$ From this inequality we obtain (6.8) $$n_0 < \sqrt{\frac{M^2 + 3M - 2}{2M(\nu_0 - 2) + 2}} - 1$$ or, approximately, for $\nu_0 > 2$ (6.8') $$n_0 < \sqrt{\frac{M+3}{2(\nu_0-2)}} - 1$$ Formula (6.8) is illustrated in Table 6. Table 6 The Maximum Integer (n₀) Satisfying (6.8) for Various M and ν_0 | $M \nu_0$ | 2 | 3 | 4 | 5 | 10 | |-----------|------|----|----|----|----| | 100 | 70 | 6 | 4 | 3 | 1 | | 416 | 294 | 13 | 9 | 7 | 4 | | 1000 | 707 | 21 | 14 | 11 | 6 | | 1654 | 1169 | 27 | 19 | 15 | 9 | | 5000 | 3535 | 49 | 34 | 27 | 16 | | 10000 | 7071 | 69 | 49 | 39 | 24 | no = maximum degree of series expansion M = number of observations v_0 = number of iterative steps The table shows that the iterative method is favorable merely for up to 2 or possibly 3 necessary iterations. However, as earlier discussed, the available approximations $h^{(0)}$ could very well meet such a requirement. #### 7. Conclusions Geopotential coefficients determined by collocation were found to agree somewhat better with the GEM 9 coefficients than the coefficients determined by pure integration of 10° mean anomalies. This result is probably due to the incorporation of a weighting of the observations with respect to their a priori accuracies. However, this gain is achieved at the cost of several times more computation time. By the inclusion of the elevation information in collocation, the coefficients to degree 20 changed by 3% on the average. A surprisingly large difference of 10% was obtained for n=3. The RMS changes of the undulation and the anomaly were 2 meters and 0.7 mgal, respectively. In general, however, we might expect that the 10° blocks give a too rough approximation to the topography to reveal any more significant magnitudes of the changes of the coefficients when including a correction for the topography (the Molodensky G_1 term). A possible explanation of the 10% differences for n=3 in various methods might be the non-symmetric distribution of the continents between the northern and the southern hemisphere. From the comparison of the coefficient accuracy estimates for various methods (Table 3) we conclude that the error covariances between the mean anomalies should be taken into account in the computations by direct integration. In collocation it seems less important to include these covariances in the computations. A natural continuation of the above study would be to compute the coefficients for 5° mean anomalies by collocation. However, due to the difficult task to invert an auto-covariance matrix for more than 1600 observations, the original method should first be modified according to the iterative method described in section 6. The method includes the solution by integration as a preliminary step. As this technique avoids the inversion of the auto-covariance matrix, a considerable gain in computer time can be expected. Another possibility would be to determine the auto-covariance matrix in an iterative way. #### References - Hajela, D. P., Equal Area Blocks for the Representation of the Global Mean Gravity Anomaly Field, Department of Geodetic Science Report No. 224, The Ohio State University, Columbus, June, 1975. - Heiskanen, W. A. and H. Moritz, <u>Physical Geodesy</u>, W. H. Freeman and Co., San Francisco, 1967. - Lerch, F. J., S. Klosko, R. Laubscher, and C. Wagner, Gravity Model Improvement <u>Using Geos-3 (GEM 9 & 10)</u>, NASA Document X-921-77-246, Goddard Space Flight Center, Greenbelt, Maryland, September, 1977. - Meissl, P., A Study of Covariance Functions Related to the Earth's Disturbing Potential, Department of Geodetic Science Report No. 151, The Ohio State University, Columbus, 1971. - Miller, G. F., Fredholm Equations of the First Kind, Chapter 13 of Numerical Solution of Integral Equations, edited by L. M. Delves and J. Walsh, Clarendon Press, Oxford, 1974. - Moritz, H., Least-Squares Estimation in Physical Geodesy, Dept. of Geodetic Science Report No. 130, The Ohio State University, Columbus, 1970. - Moritz, H., Advanced Least-Squares Methods, Department of Geodetic Science Report No. 175, The Ohio State University, Columbus, 1972. - Pellinen, L. P., Accounting for Topography in the Calculation of Quasi-geoidal Heights and Plumb-line Deflections from Gravity Anomalies, Bulletin Géodésique, No. 63, 1962. - Rapp, R. H., Potential Coefficient Determinations from 5° Terrestrial Gravity Data, Department of Geodetic Science Report No. 251, The Ohio State University, Columbus, 1977a. - Rapp, R. H., The Use of Gravity Anomalies On a Bounding Sphere to Improve Potential Coefficient Determinations, Department of Geodetic Science Report No. 254, The Ohio State University, Columbus, 1977b. - Schwarz, K. P., Geodetic Accuracies Obtainable from Measurements of First and Second Order Gravitational Gradients, Department of Geodetic Science Report No. 242, The Ohio State University, Columbus, 1976. - Sjöberg, L., On the Errors of Spherical Harmonic Developments of Gravity at the Surface of the Earth, Department of Geodetic Science Report No. 257, The Ohio State University, Columbus, 1977. - Sjoberg, L., Integral Formulas for Heterogeneous Data in Physical Geodesy, Department of Geodetic Science, The Ohio State University, in preparation, 1978. The same of sa - Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models, Department of Geodetic Science Report No. 208, The Ohio State University, Columbus, 1973. - Westlake, J. R., A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, John Wiley and Sons, Inc., New York, 1968. The state of s Conflicted Delayer State of the Conflicted of the Conflicted State Conf ## **Appendix** It is desired to determine the spherical harmonic coefficients (referring to the Bjerhammar sphere of radius r_B) implied by a mean anomaly field $\overline{\Delta g}$ on a sphere of radius r_B . The following covariance functions are given: (A.1) $$\left\{ \begin{array}{l} c_o \\ c_s \end{array} \right\} (P) = \left\{ \begin{array}{l} \cos \left(\overline{C}_{n'n'}, \overline{\Delta g_p} \right) \\ \cos \left(\overline{S}_{n'n'}, \overline{\Delta g_p} \right) \end{array} \right\} = b_{n'} \left(\begin{array}{l} r_g \\ r_p \end{array} \right)^{n+2} Y_{n'n'}(P)$$ where $$b_{n'} = c_{n'} \beta_{n'} / \gamma (2n'+1) (n'-1)$$ $$Y_{n'n'}(P) = P_{n'|n'|}(\sin \phi_P) \begin{cases} \cos m' \lambda P \\ \sin |m'| \lambda P \end{cases}$$ (A.2) $$c(Q, P) = cov(\overline{\Delta g_Q}, \overline{\Delta g_P}) = \sum_{n=2}^{\infty} c_n \beta_n^2 (r_B^2/r_Q r_P)^{n+2} P_n(\cos \varphi_{QP})$$ and (A.3) $$d(Q, P) = cov (\epsilon_Q, \epsilon_P) = \sum_{n=2}^{\infty} d_n \beta_n^2 (r_B^2/r_Q r_P)^{n+2} P_n (cos \varphi_{QP})$$ The solutions for $\overline{C}_{n'n'}$ and $\overline{S}_{n'n'}$ by the method of least squares collocation are given by (see Sjöberg, 1978) $$\left\{ \begin{matrix} A.4 \\ A.4 \end{matrix} \right\} = \frac{1}{4\pi} \int \int \left\{ \begin{matrix} h_c (Q) \\ h_s (Q) \end{matrix} \right\} \overline{\Delta g} (Q) d\sigma_Q$$ where the weight functions h_c (Q) and h_s (Q) are given by h(Q) of the following Wiener-Hopf integral equations (A.5) $$\left\{ \begin{array}{l} c_c \\ c_s \end{array} \right\} (P) = \frac{1}{4\pi} \int \int h(Q) \left\{ c(Q, P) + d(Q, P) \right\} d\sigma_Q$$ <u>Proposition 1:</u> The weight functions for C_{nm} and S_{nm} in (A.4) implied by (A.1) - (A.3) and (A.5) for $r_p = r_q = r_m = constant$ are given by: (A.6) $$h(Q) = \left(\frac{r_n}{r_n}\right)^{n+2} \frac{c_n}{c_n + d_n} Y_{nn}(Q) / \gamma \beta_n(n-1)$$ Proof: We expand (A.2) and (A.3) accordingly: (A.2') $$c(Q, P) = \sum_{n=2}^{\infty} \sum_{n=-n}^{n} \frac{c_n R_n^2}{2n+1} \left(\frac{r_0}{r_n}\right)^{2(n+2)} Y_{nn}(Q) Y_{nn}(P)$$ and (A.3') $$d(Q, P) = \sum_{n=2}^{\infty} \sum_{n=-n}^{n} \frac{d_{n} \beta_{n}^{2}}{2n+1} \left(\frac{r_{\theta}}{r_{n}}\right)^{3(n+2)} Y_{nn}(Q) Y_{nn}(P)$$ (A.7) $$\frac{1}{4\pi} \iint Y_{n,n} Y_{p,q} d\sigma = \begin{cases} 1 & \text{if } n = p \text{ and } m = q \\ 0 & \text{otherwise} \end{cases}$$ Inserting (A.1), (A.2'), (A.3') and the expansion $$h(Q) = \sum_{n=0}^{\infty} \sum_{n=-n}^{n} h_{n} Y_{n}(Q)$$ into (A.5) we obtain from (A.7): (A.8) $$b_{n'}(r_B/r_m)^{n+2} Y_{n'n'}(P) = \sum_{n,m} b_{nn} \frac{c_n + d_n}{(2n+1)} \beta_n^2 (r_B/r_m)^{2(n+2)} Y_{nn}(P)$$ This identity is satisfied by $$h_{n} = \begin{cases} \frac{c_n}{c_n + d_n} \left(\frac{r_n}{r_n}\right)^{n+2} / \gamma \beta_n \quad (n-1) & \text{if } n = n' \text{ and } m = m' \\ 0 & \text{otherwise} \end{cases}$$ The proposition follows from this result. Using the following approximation (cf. Meissl, 1971, pp. 22-23) $$\frac{1}{\Delta\sigma} \iint_{\Delta\sigma} Y_{n \cdot n}(Q) d\sigma_{Q} = \beta_{n} Y_{n \cdot n}(\overline{Q})$$ where \overline{Q} is the center of the block $\Delta\sigma$, we obtain the following
relation from (A. 6): (A.9) $$\frac{1}{4\pi} \iint_{\Delta \sigma_{k}} h(Q) d\sigma = \left(\frac{\mathbf{r}_{n}}{\mathbf{r}_{B}}\right)^{n+2} \frac{\mathbf{c}_{n}}{\mathbf{c}_{n} + \mathbf{d}_{n}} Y_{nn}(\overline{Q}_{k}) \Delta \sigma_{k} / 4\pi \gamma (n-1)$$ $$-26-$$ Corollary 1: For d(Q, P) of Proposition 1 replaced by $$d(Q, P) = \epsilon^2(Q) \delta(\psi_{QP})$$ where $\delta(\psi_{QP})$ is the Dirac delta function, we obtain (A.10) $$h(Q) = \frac{c_n \beta_n}{\gamma(n-1)} \left(\frac{r_B}{r_m}\right)^{n+2} \frac{1}{c_n \beta_n^2 (r_B/r_m)^{2(n+2)} + (2n+1) \epsilon^2(Q)} Y_{n_m}(Q)$$ Proof: As $$\frac{1}{4\pi} \int \int \epsilon^{2} (Q) \delta(\psi_{QP}) Y_{nm}(Q) d\sigma_{Q} = \epsilon^{2} (P) Y_{nm}(P)$$ formula (A. 8) becomes in this case $$b_{n}'(\mathbf{r}_{B}/\mathbf{r}_{m})^{n'+2} Y_{n'm'}(P) \equiv \sum_{n\neq m} h_{nm} \left(\frac{c_{n}}{2n+1} \beta_{n}^{2} \left(\frac{\mathbf{r}_{B}}{\mathbf{r}_{m}}\right)^{2(n+2)} + \epsilon^{2}(P)\right) Y_{nm}(P)$$ and the proof follows after noting that $$h_{nm} = 0$$ for $n \neq n'$ and $m \neq m'$. In accordance with formula (A.9) we obtain in this case: $$(A.11) \qquad \frac{1}{4\pi} \iint h(Q) d\sigma \approx \frac{c_n \beta_n^2}{\gamma(n-1)} \left(\frac{r_{\text{B}}}{r_{\text{m}}}\right)^{n+2} \frac{1}{c_n \beta_n^2 (r_{\text{B}}/r_{\text{m}})^2 (n+2) + (2n+1) \epsilon^2 (\overline{Q}_k)} Y_{n\text{m}} (\overline{Q}_k) \frac{\Delta \sigma_k}{4\pi}$$ <u>Proposition 2:</u> The error estimates for \hat{C}_{nu} and \hat{S}_{nu} of (A.4) and (A.5) are given by $$\overline{m}^2 = C_0 - \frac{1}{16\pi^2} \iiint h(Q) \ h(Q') \left\{ c(Q,Q') + d(Q,Q') \right\} \ d\sigma_Q \ d\sigma_Q.$$ where Co is the a priori variance of the coefficients. **Proof:** We consider only the estimate \hat{C}_{nn} . $$\overline{\mathbf{m}}_{\mathbf{c}}^{2} = \mathbf{E} \left\{ \left(\overset{\wedge}{\mathbf{C}}_{\mathbf{nm}} - \overline{\mathbf{C}}_{\mathbf{nm}} \right)^{2} \right\} = \mathbf{E} \left\{ \overline{\mathbf{C}}_{\mathbf{nm}}^{2} \right\} + \mathbf{E} \left\{ \overset{\wedge}{\mathbf{C}}_{\mathbf{nm}}^{2} \right\} - 2 \mathbf{E} \left\{ \overline{\mathbf{C}}_{\mathbf{nm}} \overset{\wedge}{\mathbf{C}}_{\mathbf{nm}} \right\}$$ where $$\begin{split} E\left\{\overline{C}_{nn}^{\ 2}\right\} &= C_0 \\ E\left\{\overline{C}_{nn}^{\ 2}\right\} &= \frac{1}{16\pi^2} \iiint h(Q) \ h(Q) \ E\left\{\overline{\Delta g}_Q \ \overline{\Delta g}_Q \right\} d\sigma_Q \ d\sigma_Q \ , \\ &= \frac{1}{16\pi^2} \iiint h(Q) \ h(Q) \ \left\{c(Q,Q) + d(Q,Q)\right\} d\sigma_Q \ d\sigma_Q \ , \end{split}$$ and $$\begin{split} E\left\{\overline{C}_{nn}^{\ 2}\right\} &= \frac{1}{4\pi} \iiint h(Q) \ E\left\{\overline{C}_{nn} \ \overline{\Delta g}_Q\right\} d\sigma_Q \\ &= \frac{1}{4\pi} \iint h(Q) \ c_c(Q) \ d\sigma_Q \\ &= \frac{1}{16\pi^2} \iiint h(Q) \ h(Q) \ \left\{c(Q,Q) + d(Q,Q)\right\} d\sigma_Q \ d\sigma_Q \ , \end{split}$$ From these deductions the proposition follows immediately. Commission of the Commission of Table A.1: Fully Normalized Geopotential Coefficients Determined from 416 10° Mean Anomalies by Collocation. No Mean Elevations Included. All Coefficients multiplied by 10° . a=6378140 m. | M | n | C | 9 | SICTA | SICHA | N | M | c | 6 | BICMA | SICMA | |---------|----|--------------------|--------------------|------------------|--------|----|----|--------------------|---------|------------------|------------------| | 2 | | -483.4460 | | 0.2016 . | | | | | | | | | 22353 | 1 | 0.3000 | -0.0906 | 9.1799 | 0.1788 | 2 | 2 | 2.4488 | -1.3057 | 0.1678 | 0.1897 | | 3 | | 9.7133 | | 0.2304 | | - | - | | | 0.1010 | 0.1077 | | 3 | 1 | 1.8349 | 0.1254 | 0.2263 | 0.2261 | 3 | 2 | 1.1793 | -0.4719 | 0.2263 | 0.2243 | | | 3 | | 1.5310 | 0.2193 | 0.2203 | | | | | | | | * | 1 | 0.8957
-0.4564 | -0.4057 | 0.1324 | | | - | | | | | | 445555 | 3 | 0.7955 | -0.3966 | 0.1219 | 0.1217 | : | 2 | 0.3170
-0.2265 | 0.3939 | 9. 1225 | 0.1227 | | 5 | • | 0.2236 | -0.0700 | 0.0096 | 0.1100 | | • | -0.2200 | 0.4.00 | 0.1151 | 0.1141 | | 5 | 1 | -0.1576 | -0.2482 | 0.9821 | 0.0817 | 5 | 2 | 0.4107 | -0.2016 | 0.0020 | 0.0824 | | 5 | 3 | -0.2448 | -0.1369 | 0.0011 | 0.0811 | 5 | 4 | -0.0921 | -0.0276 | 9.0771 | 0.0769 | | | 5 | 0.1064 | -0.4974 | 0.0740 | 0.0766 | | | | | | | | 6 | | -0.1376 | | 0.0540 | | | | | | | | | 6 | 3 | 0.1128 | 0.9635 | 9.0466 | 0.0457 | 6 | 2 | 0.2816 | -0.3645 | 0.0464 | 0.0459 | | 2 | 5 | -0.0173
-0.3760 | -0.0625
-0.5370 | 0.0459 | 0.0435 | 6 | 6 | -0.1800
0.0097 | -0.4041 | 0.0426 | 0.0423 | | 7 | | 0.2002 | -0.0010 | 0.0547 | 0.0370 | • | | 0.0071 | -0.2402 | 4.0371 | 0.0375 | | 7 | 1 | 0.2018 | 0.0466 | 0.0513 | 0.0510 | 7 | 2 | 0.2858 | 0.1194 | 0.0497 | 0.0499 | | 7 | 3 | 0.1615 | -0.1805 | 0.0501 | 0.0301 | 7 | 4 | -0.1572 | -0.1660 | 0.0490 | 0.04(19 | | 7 | 5 | 0.0896 | -0.0060 | 0.0466 | 0.0472 | 7 | 6 | -0.3078 | 0.2000 | 0.0448 | 0.0449 | | 7777088 | 7 | -0.0325 | -0.0921 | 0.0450 | 0.0449 | | | | | | | | 8 | | 0.0422 | | 0.0441 | | | _ | | | | | | 8 | 3 | -0.0423 | 0.9575 | 0.0492 | 0.0400 | 0 | 2 | 0.1353 | 0.0995 | 0.0399 | 0.8404 | | | 5 | -0.9176 | 0.0345 | 0.038A
0.0366 | 0.0385 | 8 | 6 | -0.2167 | 0.0515 | 0.0392 | 0.0307 | | 899999 | 7 | 0.0383 | 0.0713 | 9.0338 | 0.0375 | 8 | å | -0.0006
-0.1417 | 0.1988 | 9.0358
9.0345 | 0.0354 | | 4 | • | 0.1336 | 0.0 | 0.0409 | 0.0000 | .0 | | -4.1411 | 0.0711 | W. 0343 | 0.0338 | | 9 | 1 | 0.1723 | -0.0228 | 0.0382 | 0.0301 | 9 | 2 | 0.1171 | -0.0843 | 0.0300 | 0.0384 | | 9 | 3 | -0.1786 | -0.0305 | 0.0373 | 0.0372 | | 4 | -0.0398 | 0.0490 | 9.0368 | 0.0363 | | 9 | 2 | -0.0572 | -0.0336 | 0.0362 | 0.0367 | 9 | 6 | 0.0014 | 0.1823 | 0.0347 | 0.0344 | | 9 | 7 | -0.0023 | -0.0215 | 9.0336 | 0.0336 | 9 | U | 0.2038 | 0.0065 | 0.0327 | 0.0324 | | | 9 | -0.0159 | 0.0237 | 0.0333 | 0.0333 | | | | | | | | 10 | 1 | 9.0303 | -0.0147 | 0.0331 | | | - | | | | | | 10 | 3 | -0.9416 | -0.0954 | 0.0326 | 0.0328 | 10 | 2 | -0.0657
-0.0674 | -0.0457 | 0.0324 | 0.0326
0.0303 | | 10 | 5 | -0.0261 | -0.0113 | 0.0301 | 0.0306 | 10 | 6 | -0.0475 | -0.0479 | 0.0299 | 0.0296 | | 10 | 7 | 9.0024 | -0.0187 | 0.0278 | 0.0279 | 10 | 8 | 0.0413 | -0.0533 | 0.0275 | 0.0270 | | 10 | 9 | 0.1013 | -0.0222 | 0.0263 | 0.0265 | 10 | 10 | 0.1159 | -0.0309 | 0.9277 | 0.0274 | | 11 | | -0.0933 | | 0.0336 | | | | | | | | | 11 | 1 | -0.0214 | 0.0197 | 0.0310 | 0.0311 | 11 | 2 | -9.0219 | -0.0922 | 0.0317 | 0.0310 | | !! | 3 | -0.0747 | -0.1126 | 0.0306 | 0.0304 | !! | • | -0.1044 | -0.0787 | 0.0302 | 0.0299 | | 11 | 8 | 0.0123 | -0.105B | 0.0288 | 0.0292 | 11 | 6 | 0.0092 | 0.0100 | 0.0289 | 0.0207 | | ii | • | -0.0456 | Ø. 0B17 | 0.0263 | 9.0264 | 11 | 10 | -9.0269 | 9.0613 | 9.0266
9.0263 | 0.0253 | | ii | 11 | 0.0769 | -0.0164 | 0.0271 | 0.0271 | | | | 4.4.00 | 0.0200 | V. V23. | | 12 | | 0.0330 | | 0.0321 | | | | | | | | | 12 | 1 | -0.0213 | -0.0334 | 9.0247 | 0.0298 | 12 | 2 | ●. 9038 | -0.0309 | 0.0303 | 0.0306 | | 12 | 3 | 0.0097 | 0.0387 | 0.0295 | 0.0294 | 12 | 4 | -0.0653 | -0.0343 | 0.0288 | 0.0207 | | 12 | 2 | 0.0376 | -0.0023 | 0.0281 | 0.0203 | 12 | | 0.0253 | 0.0496 | 0.0275 | 9.0272 | | 12 | 7 | -0.0240 | 0.0267 | 0.0272 | 0.0271 | 12 | .8 | 0.0100 | 0.0264 | 0.0263 | 0.0261 | | 12 | 11 | 0.0106 | 0.0169 | 0.0252 | 9.0251 | 12 | 10 | -0.0094 | -0.0265 | 9.0254 | 0.0203 | | 15 | | 0.0473 | 0.0007 | 0.0303 | 0.0231 | 12 | 12 | 0.0134 | -9.0094 | 0.0265 | 0.0264 | | 13 | 1 | -0.0016 | 0.0186 | 0.02110 | 0.0292 | 13 | 2 | 9.0085 | -0.0414 | 0.0289 | 0.0293 | | iā | å | -0.0144 | 0.0421 | 0.0287 | 9.0206 | 13 | - | 0.0019 | -0.0060 | 0.0277 | 0.0275 | | 13 | 8 | 0.0386 | 0.0397 | 0.0271 | 0.0273 | 13 | 6 | -0.0246 | -0.0086 | 0.0265 | 0.0265 | | 13 | 7 | -0.0171 | 0.0157 | 0.0239 | 0.0239 | 13 | Ö | -0.0237 | 0.0200 | 0.0258 | 0.0255 | | 13 | 9 | -0.0140 | 0.0354 | 9.0248 | 9.0247 | 13 | 10 | 0.0359 | -0.0149 | 0.0243 | 0.0240 | | 13 | 11 | 0.0043 | 0.0201 | 0.0245 | 0.0246 | 13 | 12 | -9.0016 | 0.8943 | 0.0242 | 0.0245 | | | 13 | -0.0347 | 0.0637 | 0.0257 | 0.0260 | | | | | | | | 14 | | 0.0000 | | 9.02110 | | | | | | | | THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC | 14 1 | 0.0204 | 0.0084 | 0.0276 | 9.9289 | 14 2 | -0.0307 | -0.0173 | 0.0272 | 0.0272 | |-------|--------------------|-------------------|---------|------------------|----------------|--------------------|---------|---------|------------------| | 14 3 | 0.0096 | 0.0082 | 9.0272 | 0.0270 | 14 2 | -0.0016 | -0.0280 | 9.0263 | 0.0260 | | 14 5 | 0.0147 | -0.0070 | 0.0254 | 0.0254 | 14 6 | -0.00B5 | 0.0010 | 0.0251 | 0.0250 | | 14 7 | 0.0342 | -0.0140 | 0.0242 | 0.0241 | 14 0 | | -0.0234 | 0.0240 | 0. 6237 | | 14 9 | 0.0154 | 0.0416 | 0.0234 | 0.0234 | 14 10 | | -0.0036 | 0.0228 | 9.0225 | | 14 11 | 9.0336
9.0365 | 0.0287 | 0.0224 | 0.0223 | 14 14 | | -0.0205 | 9.0244 | 0.0231 | | 13 | -0.0027 | 0.0207 | 0.0259 | 0.0220 | 14 14 | -0.0171 | 0.0117 | 9.0244 | 0.0245 | | 15 1 | 0.0337 | 0.0269 | 0.0270 | 0.0274 | 15 2 | 0.0045 | 0.0133 | 0.0266 | 0.0267 | | 1: 3 | 0.0441 | 0.0452 | 0.0262 | 0.0262 | 15 4 | | -0 0129 | 9. 9269 | 0.0258 | | 13 6 | 0.0997 | 0.0133 | 0.0247 | 0.0248 | 15 6 | | 0254 | 8.0245 | 0.0246 | | 15 7 | 0.0563 | 0.0118 | 0.0240 | 0.0239 | 15 0 | | J.0198 | 0.0234 | 0.0231 | | 15 9 | 9.0024
-0.0043 | 0.9114 | 0.0230 | 6.0231
6.0220 | 15 10
15 12 | | 0.0646 | 0.0226 | 6.0220 | | 15 13 | -0.9183 | 0.0177 | 0.9220 | W. 0226 | 10 14 | | -0.0212 | 0.9227 | 0.0227 | | 15 15 | -0.0263 | 0.0083 | 0.0244 | 0.0243 | | | | | | | 16 | 0.0214 | | 0.0234 | | | | | | | | 16 1 | -0.0083 | 0.0170 | 0.0268 | 0.0270 | 16 2 | | 0.0019 | 0.0258 | 0.0258 | | 16 3 | -0.0176
-0.0123 | 0.0246 | 9.0256 | 9.0256 | 16 4 | 0.0314 | 0.0619 | 0.9252 | 0.0252 | | 16 5 | -0.0118 | -0.0064 | 0.0245 | 0.0245 | 16 6
16 8 | | 0.0349 | 0.0237 | 0.0239
0.0223 | | 16 9 | -0.0049 | -0.0589 | 0.0222 | 0.0226 | 16 19 | | -0.0083 | 9.0224 | 0.0223 | | 16 11 | 0.0064 | -0.0104 | 0.0221 | 0.0217 | 16 12 | | 0.0912 | 0.0217 |
0.0216 | | 16 13 | 0.0011 | 0.0153 | 0.0221 | 9.0213 | 16 14 | -9.9018 | -0.0239 | 9.0225 | 0.0224 | | 16 15 | -0.0098 | -0.0335 | 0.0231 | 0.0219 | 16 16 | -0.0178 | -0.0172 | 0.0242 | 0.0249 | | 17 | 0.0019 | | 0.0197 | | | | | | | | 17 1 | 0.0054 | 0.0228 | 0.0296 | 0.0277 | 17 4 | -0.0307
-0.0194 | 0.0298 | 0.0217 | 9.0230 | | 17 5 | -0.0163 | 0.0114 | 0.0247 | 0.0248 | 17 6 | | -0.0351 | 0.0220 | 0.0230 | | 17 7 | 0.0192 | -0.0231 | 0.0231 | 0.0232 | 17 0 | | -0.0092 | 0.0226 | 0.0224 | | 17 9 | -0.01111 | -0.0336 | 0.0218 | 0.0222 | 17 19 | -0.0110 | 0.0128 | 0.0218 | 0.0217 | | 17 11 | -0.0013 | 0.0034 | 0.0219 | 0.0214 | 17 12 | -0.0166 | 0.0002 | 0.0213 | 0.0212 | | 17 13 | 0.0174 | 0.0102 | 0.0222 | 0.0204 | 17 14 | | 0.0198 | 0.9215 | 0.0215 | | 17 13 | 0.0146 | 0.0172 | 0.0235 | 0.0200 | 17 16 | -0.0112 | 0.0141 | 0.0223 | 0.0222 | | 18 | 0.0069 | 0.0001 | 0.0302 | 0.72.77 | | | | | | | 18 1 | -0.0199 | -0.0390 | 0.0165 | 0.0167 | 18 2 | -0.0054 | 0.0039 | 0.0309 | 0.0309 | | 10 3 | -0.0030 | -0.0107 | 0.0153 | 0.0154 | 10 2 | 9.0064 | 0.0053 | 0.0292 | 0.0292 | | 18 5 | 0.0044 | 0.0138 | 0.01112 | 0.0103 | 18 6 | | -0.0022 | 0.0256 | 0.0256 | | 18 7 | -0.0016
0.0058 | -0.0010 | 0.0206 | 0.0206 | 10 0 | | -0.0076 | 0.0229 | 0.0220 | | 10 11 | -0.0211 | 0.0087
-0.0076 | 0.0210 | 0.0213 | 18 10
18 12 | 0.0184 | -0.0049 | 0.0214 | 0.0213 | | 18 13 | -0.0032 | -0.0520 | 9.0225 | 0.0100 | 18 14 | 0.0022 | -0.0193 | 0.0209 | 0.0210 | | 18 13 | -0.0419 | -0.0271 | 0.0237 | 0.0102 | 10 16 | | 0.0129 | 0.0219 | 0.0217 | | 18 17 | 0.0091 | -0.0097 | 0.0220 | 0.0217 | 18 18 | -0.0041 | -0.0116 | 0.0292 | 0.0151 | | 19 | 0.0001 | | 0.0253 | | | | | | | | 19 1 | 0.0007 | -0.0176 | 0.0216 | 0.0217
0.0237 | 19 2 | | -0.0094 | 9.0247 | 0.0247 | | .17 5 | -0.0089 | 0.0049 | 0.0269 | 0.0267 | 19 4 | | 0.0166 | 0.0197 | 0.0197 | | 19 7 | -0.0026 | 0.0045 | 9.0259 | 0.0259 | 19 B | | 0.0013 | 0.0179 | 9.0179 | | 19 9 | 0.0049 | 0.0039 | 0.0220 | 0.0231 | 19 10 | | -0.0092 | 0.0198 | 0.0198 | | 19 11 | 0.0003 | 0.0060 | 0.0210 | 0.0200 | 19 12 | | -0.0030 | 0.0204 | 0.0202 | | 19 13 | 0.0077 | -0.0203 | 0.0230 | 0.0173 | 19 14 | | -0.0066 | 0.0202 | 0.0203 | | 19 13 | 0.0007 | -0.0155 | 0.0241 | 0.0163 | 19 16 | | 0.0009 | 0.0208 | 0.0206 | | 19 17 | 0.0100 | 0.0095 | 0.0214 | 0.0213 | 19 10 | 0.0336 | -0.0092 | 0.02.0 | 0.0197 | | 20 | -0.0036 | 0.0070 | 0.0234 | 17,11220 | | | | | | | 20 1 | -0.0119 | -0.0031 | 0.0216 | 0.0216 | 20 2 | -0.0036 | 0.0033 | 0.0227 | 0.0227 | | 29 3 | -0.0076 | 0.0007 | 0.0233 | 0.0233 | 20 4 | -0.0050 | -0.0193 | 0.0198 | 0.0198 | | 20 6 | -0.0040 | 0.0011 | 0.0230 | 0.0230 | 20 6 | | 0.0036 | 0.0221 | 0.0221 | | 20 7 | -0.0179 | -0.0065 | 0.0178 | 9.0179 | 20 8 | | 0.0142 | 0.0244 | 0.0245 | | 29 11 | 0.0202 | 0.0037 | 0.0161 | 0.0163 | 20 12 | | 0.0078 | 0.0226 | 0.0204 | | 20 13 | 0.0039 | -0.0004 | 0.0223 | 0.0162 | 20 14 | | -0.0019 | 0.0198 | 0.0199 | | 20 15 | 0.0005 | -0.0074 | 0.0228 | 0.0159 | 20 16 | -0.0163 | -0.0090 | 0.0200 | 0.0201 | | 20 17 | -0.0014 | 0.0067 | 0.0202 | 0.0202 | 20 18 | -0.0094 | -0.0189 | 0.0218 | 0.0196 | | 20 19 | -0.0033 | 0.0911 | 0.0208 | 0.0208 | 20 20 | 0.8152 | 0.0043 | 0.0217 | 0.0218 | | | | | | | | | | | | Table A.2: Fully Normalized Geopotential Coefficients Determined from 416 10° Mean Anomalies by Collocation. Approximate Mean Elevations Included. All coefficients multiplied by 10° . a = 6378140 m. | M | M | C | 8 | BICMA | BICMA | N | M | C | 8 | BICMA | BICHA | |----------------|----|-------------------|---------|--------|---------|----|----|-------------------|---------|---------|--------| | 2 | | -483.4651 | | 0.2212 | | | | | | | | | 1110000+++0000 | 1 | 0.2721 | -0.0049 | 0.2098 | 0.2196 | 2 | 2 | 2,3810 | -1.3976 | 9. 1927 | 9.1806 | | 3 | | 0.6295 | | 6.1772 | | | | | | | | | 3 | 1 | 1.0080 | -0.6201 | 9.1730 | 0.1604 | 3 | 2 | 1.3741 | -0.54/2 | 0.1674 | 0.1690 | | 3 | 3 | 0.6623 | 1.5512 | 0.1580 | 0.1662 | | | | | | | | • | | 0.8659 | | 0.1096 | | | | | | | | | • | 1 | -0.4433 | -0.3807 | 0.1001 | 0. 9967 | : | 2 | 0.3700 | 0.4065 | 0.1036 | 0.1019 | | : | 3 | 0.7904 | -0.3962 | 0.0947 | 0.0976 | • | 4 | -0.2159 | 0.3966 | 0.0968 | 0.0903 | | 3 | 1 | 0.2038 | -0.2469 | 0.0699 | 0.0673 | 5 | 2 | 0.4138 | -0.1989 | 0.0721 | 0.0705 | | - | 3 | -0.2435 | -0.1402 | 0.0694 | 0.0709 | 5 | 4 | -0.0911 | -0.0495 | 0.0662 | 0.0645 | | × | 5 | 0.1198 | -0.4990 | 0.0617 | 9.0667 | • | • | -0.0711 | -0.0473 | 0.0002 | 0.0050 | | | | -0.1464 | 0.4 | 0.0583 | 0.000. | | | | | | | | 6666 | 1 | 0.1175 | 0.0490 | 0.0480 | 9.0486 | 6 | 2 | 0.2776 | -0.3591 | 0.0490 | 0.0489 | | 6 | 3 | -0.0168 | -0.0632 | 0.0487 | 0.0485 | 6 | 4 | -0.1730 | -0.4046 | 0.0455 | 0.0459 | | 6 | 5 | -0.3857 | -0.5336 | 0.0399 | 0.0424 | 6 | 6 | 0.0041 | -0.2293 | 0.0402 | 0.0407 | | 7 | | 0.2042 | | 0.0504 | | | | | | | | | 7 | | 0.2090 | 0.0453 | 0.0473 | 0.0460 | 7 | 2 | 0.2941 | 0.1235 | 0.0450 | 0.0450 | | 7 | 3 | 0.1597 | -0.1926 | 0.6452 | 9.0455 | 7 | 4 | -0.1582 | -0.1714 | 0.0450 | 0.0448 | | 7 | 3 | 0.0835 | -0.0001 | 0.0421 | 0.0434 | 7 | 6 | -0.3094 | 0.2030 | 0.0410 | 0.0401 | | 777770 | 7 | -0.0367 | -0.0903 | 0.0411 | 0.0414 | | | | | | | | | 1 | -0.0410 | 0.0544 | 0.0438 | 0.0391 | 8 | 2 | 0.1375 | 9.1005 | 0.0389 | 0.0392 | | | 3 | 0.0795 | -0.0228 | 0.0378 | e. 0375 | 8 | 4 | -0.2114 | 0.0454 | 0.0384 | 9.0378 | | ä | 5 | -0.0193 | 0.0311 | 0.0339 | 0.0369 | ä | 6 | -0.0063 | 0.2006 | 0.0347 | 0.0345 | | 888 | 7 | 0.0445 | 9.0735 | 0.0336 | 6.0328 | a | 8 | -0.1438 | 0.0959 | 0.0344 | 0.0331 | | | | 0.1377 | 0.0100 | 0.0391 | 0.0020 | •• | | 0.1400 | 0.0,0, | 0.0044 | 0.0351 | | 9 | | 0. 1770 | -0.0223 | 0.0364 | 0.0360 | 9 | 2 | 0.1169 | -6.0136 | 0.0369 | 0.0365 | | 4 | 3 | -0.1794 | -0.0320 | 0.0351 | 0.0350 | 9 | 4 | -0.0619 | 0.0510 | 0.0348 | 0.0342 | | " | 5 | -0.0394 | -0.0361 | 0.0343 | 0.0349 | 9 | 6 | 0.0807 | 0.1823 | 0.0330 | 0.0325 | | 4 | 7 | -0.0827 | -0.0223 | 0.0318 | 0.0317 | 9 | 13 | 0.2041 | 0.0072 | 0.0310 | 0.0304 | | 9 | 9 | -0.0179 | 0.0253 | 0.6314 | 0.0317 | | | | | | | | 10 | | 0.0264 | | 0.0353 | | | _ | | | | | | 10 | 1 | 0.1151 | -0.6175 | 6.0328 | 0.0328 | 10 | 2 | -0.0667 | -0.0425 | 0.0323 | 0.0326 | | 10 | 3 | -0.0419 | -0.0978 | 0.0319 | 0.0319 | 10 | 6 | -0.0704 | -0.0950 | 0.0309 | 0.0305 | | 10 | 5 | -0.0270
0.6828 | -0.0118 | 0.0302 | 0.0307 | 10 | å | -0.0492
0.0410 | -0.0524 | 0.0299 | 0.0297 | | 10 | 6 | 0.1031 | -0.0220 | 0.0265 | 0.0267 | 10 | 10 | 0.1172 | -0.0335 | 0.027B | 0.0272 | | ii | | -0.0966 | -0.0220 | 0.0332 | ₩.₩201 | | 10 | 0.1112 | -0.0333 | 0.0210 | 0.0273 | | ii | 1 | -0.0221 | 0.0074 | 0.0307 | 0.0307 | 11 | 2 | -0.0208 | -0.0925 | 0.0312 | 0.0314 | | ii | 3 | -0.0741 | -0.1140 | 0.0302 | 0.0300 | ii | 4 | -0.1059 | -0.0798 | 0.0297 | 0.0294 | | ii | 5 | 0.0114 | 0.0070 | 0.0284 | 0.0280 | 11 | 6 | -0.0107 | 0.0098 | 0.6285 | 0.0283 | | 11 | 7 | 0.0372 | -0.1035 | 0.0276 | 0.0276 | 11 | n | 0.0099 | 0.0609 | 0.0263 | 0.0250 | | 11 | 9 | -0.0494 | 0.0821 | 0.0259 | 0.0261 | 11 | 10 | -0.0250 | 0.0136 | 0.0260 | 0.0250 | | 11 | 11 | 0.0766 | -0.0169 | 0.0267 | 6.0269 | | | | | | | | 1222222 | | 0.0312 | | 0.0317 | | | 1 | | | | | | 12 | 1 | -0.0245 | -0.0337 | 0.0294 | 0.0293 | 12 | 2 | 0.0053 | -0.0303 | 0.0298 | 0.0302 | | 12 | 3 | 0.0114 | 0.0388 | 0.0290 | 0.6289 | 12 | • | -0.0650 | -0.0350 | 0.0283 | 0.0282 | | 12 | 5 | 0.0365 | -0.0022 | 0.0275 | 0.027B | 12 | 6 | 0.0272 | 0.0490 | 0.0270 | 0.0267 | | 12 | 7 | -0.0249 | 0.0277 | 0.0267 | 0.0267 | 12 | 10 | -0.0092 | -0.0269 | 0.0259 | 0.0256 | | 13 | ıĭ | 0.0108 | 0.0060 | 0.0246 | 0.0247 | 12 | 12 | 9.0140 | -0.0106 | 0.0250 | 0.0248 | | 12 | | 0.0469 | 0.0000 | 0.0299 | 0.0277 | 10 | | 0.0140 | 0.0100 | 0.0201 | 0.0269 | | 13 | 1 | -0.0020 | 0.0183 | 0.0204 | 0.0287 | 13 | 2 | 0.0095 | -0.0421 | 0.0284 | 0.0289 | | 13 | 3 | -0.0135 | 0.0413 | 0.0203 | 0.0202 | 13 | - | 0.0024 | -0.0069 | 0.0273 | 0.0270 | | 13 | 5 | 0.0593 | 0.0406 | 0.0266 | 0.0269 | 13 | 6 | -0.0245 | -0.0092 | 0.0261 | 0.0259 | | 13 | 7 | -0.0172 | 0.0163 | 0.0255 | 0.0254 | 13 | 8 | -0.0254 | 0.0199 | 9.0254 | 0.0250 | | 13 | 9 | -0.0137 | 0.0347 | 0.0244 | 0.0243 | 13 | 10 | 0.0351 | -0.0129 | 0.6239 | 0.0235 | | 13 | 11 | 0.0047 | 0:0204 | 0.0241 | 0.0242 | 13 | 12 | -0.0004 | 0.0966 | 0.6238 | 0.0241 | | 13 | 13 | -0.0345 | 0.0650 | 0.0255 | 0.0256 | | | | | | | | 14 | | -0.0007 | | 0.0201 | THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ | 14 | 1 | 0.0192 | 0.0074 | 0.0277 | 0.0280 | 14 | 2 | -0.0379 | -0.0164 | 0.0273 | 0.0274 | |-----|----|----------|---------------|--------|--------|------|----|---------|---------|--------|--------| | 14 | 3 | 0.0103 | 0.0095 | 0.0272 | 0.0271 | 14 | 4 | -0.0014 | -0.0273 | 0.6263 | 6.0261 | | 14 | 5 | 0.0157 | -0.0069 | 0.0255 | 0.0255 | 14 | 6 | -0.0092 | 0.0013 | 6.0251 | 0.0251 | | 14 | 7 | 6.0334 | -0.0145 | 0.0243 | 0.0242 | 14 | 8 | -0.0275 | -0.0243 | 0.0241 | 0.0236 | | 14 | 4 | 0,0157 | 0.0411 | 0.0236 | 0.0235 | | 10 | 0.0157 | -0.0040 | 0.0230 | 0.0226 | | 14 | 11 | 0.0327 | -0.0742 | 0.0225 | 0.0225 | | 12 | 0.0005 | -6.0204 | 0.0229 | 0.0232 | | 14 | 13 | 0.0370 | 0.0306 | 0.0230 | 0.0230 | 14 | 14 | -0.0104 | 0.0123 | 0.0245 | 0.6247 | | 15 | | -0.0036 | | 0.0269 | | | | | | | | | 13 | 1 | 0.0340 | 0.0267 | 0.0270 | 0.0273 | 15 | 2 | 0.0047 | 0.0137 | 0.020+ | 0.0268 | | 13 | 3 | 0,0446 | 0.0449 | 0.0262 | 0.0263 | 15 | 4 | 0.0031 | -0.0120 | 0.0259 | 0.0250 | | 13 | 5 | 0.0104 | 0.0135 | 0.0247 | 0.0248 | 15 | 6 | -0.0075 | 0.0253 | 6.0245 | 0.0246 | | 13 | 7 | 0.0359 | 0.0124 | 0.6239 | 0.0239 | 15 | 8 | -0.9439 | 0.0194 | 0.0234 | 0.6231 | | 15 | 9 | 0.0027 | -0.0029 | 0.0230 | 0.0232 | 15 | 10 | -0.0151 | -0.0006 | 0.0226 | 0.0226 | | 15 | 11 | -0.0064 | 0.0107 | 0.0223 | 0.0220 | 15 | 12 | -0. 107 | 9.0649 | 0.0221 | 0.0221 | | 15 | 13 | -0.0179 | 0.0179 | 0.0229 | 0.0226 | | 14 | 0.0119 | -0.0200 | 0.0227
0.0227		15	15	-0.0262	0.0071	0.0245	0.0243		-						16		0.0203		0.0254									10		-0.0089	0.0137	0.0260	0.0279	16	2	-0.0105	0.0035	0.0258	0.0258		16	3	-0.0174	0.0233	0.0256	0.0256	16	4	0.0317	0.0619	0.0252	0.0231		16	5	-0.0111	0.0204	0.0245	0.0245	16	6	-0.0026	-0.0322	0.6237	0.0239		16	7	-0.0125	-0.0055	0.0235	0.0236	16	8	-0.0505	0.0338	0.0229	0.0228		16	٠	-0.0032	-0.0586	0.0223	0.0226		10	-0.0062	-0.0093	6.0224	6.6223		16	11	0.0060	-0.0113	0.0221	0.0217		12	0.0156	0.0005	0.0218	0.0216		16	ià	0.0010	0.0153	0.0221	0.0215		14	-0.0019	-9.0238	0.0225			16	15	-0.0107		0.0231	0.0219						8.6225			12	0.0020	-0.0338		0.0219	16	16	-0.0173	-0.0172	0.0242	0.0240		17				0.0197			-						17	1	0.0053	0.0226	0.0295	0.0296	17	2	-0.0385	0.0176	0.0217	0.0217		17	3	0.0048	-0.0144			17	4	-0.0186	0.0308	0.0231	0.9230		17		-0.0161	0.0111	0.0247	0.0248	17	6	-0.0213	-0.0357	0.0228	0.0229		17	7	0.0188	-6.0234	0.0231	0.0231	17	8	0.0211	-0.0095	0.0225	0.0224		17	9	-0.0175	-0.0355	0.0217	0.0222		10	-0.0110	0.0127	0.0217	0.0217		17	11	-0.0011	0.0035	0.0219	0.0214		12	-0.0167	0.0002	0.0213	0.0212		17	13	0.0100	0.0105	0.0222	0.0204		14	-0.0126	0.0183	0.0215	0.0215		17	15	0.0145	0.0166	0.0235	0.0208	17	16	-0.0112	0.0134	0.0222	0.0222		17	17	-0.0314	0.0060	0.0238	0.0237								111		0.0066		0.0302		Due-							111	1	-0.0200	-0.0390	0.0165	0.0166	14)	2	-0.0054	0.0042	0.0309	0.0309		141	3	-0.0068	-0.0106	0.0153	0.0153	18	4	0.0060	0.0037	0.0292	6.0292		111	5	0.0043	0.0142	0.0181	0.0182	10	6	0.0165	-0.0027	0.0256	0.0256		111	7	-0.0015	-0.0023	0.0203	0.0206	18	B	0.0281	-0.0077	0.0229	0.0228		188	9	0.0065	0.0094	0.0210	0.0214		10	0.0184	-0.0042	0.0214	0.0213		113	11	-0.0210	-0.0076	0.0212	0.0203		12	0.0056	-0.0172	0.0211	0.0209		.18	13	-0.0055	-0.0525	0.0225	0.0188		14	0.0022	-0.0194	0.0209	0.0210		111	13	-0.0413	-0.0281	6.0237	0.0182		16	0.0103	0.0126	0.0219	0.0217		113	17	0.0093	-0.0093	0.0220	9.0217	18	18	-0.0044	-0.0124	0.0292	0.0150		1.3		-0.0003	the beautiful	0.6263									19	1	0.0001	0.0174	0.0216	0.0217	19	3	0.0209	-0.0098	0.0247	0.0247		19	3	0.0001	-0.0138	0.0237	0.0237	19	4	0.0163	-0.0116	6.0197	8.0196		19		-0.0000	0.0049	0.0269	0.0269	19	6	0.0060	9.0166	0.0159	0.0160		19	7	-0.0025	0.0042	0.0239	0.0239	19	8	0.0222	0.0017	0.0179	0.0178		19	9	0.0049	6.0043	0.0227	6,0230	19	10	-0.0134	-0.0091	0.0198	0.0197		19	11	0.0007	0.0058	0.0210	0.0200	19	12	-0.0018	-2.0031	0.0204	0.0202		19	13	0.0082	-0.0294	0.0230	0.0174		14	0.0161	-0.0065	0.0201	0.0202		19	15	0.0010	-0.0160	0.0241	0.0163		16	-0.0243	B. 0091	0.0208	0.0206		19	17	0.0194	-0.0063	0.0214	0.0212		18	0.0336	-0.0092	0.0230	0.0196		19	19	0.0199	0.0091	0.0226	0.0226				0.00.0	0.0200	0.0170		20	-	-0.0056		0.0234									20	1	-0.0129	-0.0036	0.0216	0.0216	20	2	-0.0036	0.0029	0.0227	0.0227		2.1	3	-0.0070	0.0001	0.0233	0.0233	20	4	-0.0047	-0.0187	0.0198	0.0198		20	5	-0.00.10	0.0011	6.0230	0.0230	20	6	0.0116	0.0033	0.0220	6.0226		20	7	-0.0179	-0.0069	0.0178	0.0179	20	8	0.0069	-0.0024	0.0244	0.0243		***	4	0.0284	-0.0077	0.0160	0.0162		10	-0.0013	0.0145	0.0228			20	11	0.0230	0.0037	0.0182	9.0182		12				0.0228		20	13	0.0040	-0.0006	0.0223	0.0162			-0.0191	0.0080	0.0206	0.0204		23	13	0.0085	-0.0068	0.0220			14	0.6123	-0.0015	0.0198	0.0198			17	-0.0016	0.0071	0.0228	0.0159		16	-0.0167	-0.0088	0.0200	0.0201		20	19	-0.0022	0.0006	0.6208	0.0202		18	-0.0096	-0.0187	0.0217	0.0196		20	.,	-0.0022	0.11006	0.0204	0.0208	20 :	20	0.0153	0.0644	0.0217	0.0218														THE THE WAY TO SEE THE TO SEE Table A.3: Fully Normalized Geopotential Coefficients Determined from 416 10° Mean Anomalies by Collocation. No Elevations Included. Noise Covariance Matrix D=0. a=6378140 m. Coefficients multiplied by 10° .	u	M	C	9	SIGMA	BICHA	M	H	c	8	SICMA	SICMA		----------	----	-------------------	---------	---------	---------	----	----	-------------------	---------	------------------	--------		,		-483.2466		0. 1293									223	1	0.2343	0.0751	0.0945	8080.0	2	2	2.4441	-1.4526	9.0878	0.0868		3	-	0.7037		0.1927	0,0000		-				0.0000		3	1	1.7960	0.0687	0.2045	0.2093	3	2	1.1602	-0.4638	0.2102	0.2095		3	3	0.7672	1.5695	0.2095	0.2100								4		1.0257		0.1117									4	1	-0.4485	-0.3936	0.1078	0.1076	4	2	0.9340	0.4062	0.1070	0.1065		4	3	0.7718	-0.4191	0.10.33	0.1057	4	4	-0.2243	0.4157	0.1059	0.1061		5		0.2040		0.0732		_					-		3	1	-0.1577	-0.2423	0.0699	0.0699	5	3	0.3902	-0.1930	0.0695	0.0694		5 5	3	-0.2319	-0.1332	0.06.13	0.0681	5	4	-0.0862	-0.0181	6.0674	0.0677		9	5	-0.0014	-0.5070	0.0672	0.8691								6	,	0.1246	9.0478	0.04.14	0.0292	6	2	0.2866	-0.3644	0.0288	6.0289			3	-0.0162	-0.0618	0.0263	0.0259	6	4	-0.1792	-0.4151	0.0239			6677777	5	-0.3680	-0.5424	0.02.7	0.0248	6	6	0.0017	-0.2346	0.0252	0.0248		7		0.2051	0.0929	0.0452	0.0240		•	0.0011	0.2340	0.0232	0.0237		÷	1	0.2026	0.0449	0.0412	0.0412	7	2	0.2928	0.1261	0.0411	0.0410		ż	3	0.1539	-0.1840	0.04:2	0.0399	7	4	-0.1626	-0.1636	0.0305	0.0389		7	5	0.0901	-0.0048	0.03114	0.0382	7	6	-0.3073	0.2070	0.0380	0.0384		7	7	-0.0293	-0.0949	0.0371	0.0391								8		0.0619		0.0364									11	1	-0.0443	0.0461	0.0307	0.0307	8	2	0.1292	0.0988	0.0308	0.0367		8	3	0.0812	-0.0213	0.0274	0.0294	8	4	-0.2115	0.0304	0.0281	0.0283		11	5	-0.0170	0.0339	0.0269	0.0272	8	6	-0.0877	0.1944	0.0269	0.0269		8	7	0.0404	0.0712	0.0269	0.0270	8	8	-0.1447	0.0915	0.0202	0.0282		9		0.1370		0.0315									9	1	0.1813	-0.0271	0.0310	0.0310	9	2	0.1212	-0.0779	0.0310	0.0310		9	3	-0.1873	-0.0303	0.0373	0.0302	9	4	-0.0606	0.0354	0.0291	0.0291		9	7	-0.0582	-0.0317	0.02.11	0.0281	9	6	0.0922	9. 1884	0.0276	0.0271		9	4	-0.0836	-0.0199	0.02.4	0.0276	,	43	0.2044	0.0080	0.0276	0.0276		10	,	-0.0129 0.0483	0.0262	0.0206	0.02(H)								10	1	0.1216	-0.0186	0.0234	0.0255	10	2	-0.0715	-0.0428	0.0256	0.0256		10	à	-0.0386	-0.0991	0.0216	0.0247	io	4	-0.0673	-0.1026	0.0236	0.0236		10	5	-0.0278	-0.0139	0.0221	0.0223	10	6	-0.0516	-0.0487	0.0216	0.0211		10	7	0.0064	-0.0170	0.0205	0.0209	10	ö	0.0441	-0.0371	0.0210	0.0211		10	9	0.1061	-0.0191	0.0210	0.0216	10	10	0.1077	-0.0314	0.0233	0.0224		11		-0.0929		0.0233									11	1	-0.0222	0.0041	0.0278	0.0258	11	2	-0.0241	-0.0912	0.0258	0.0250		11	3	-0.0806	-0.1206	0.0231	0.0251	11	4	-0.1038	-0.0735	0.0240	0.0241		11	5	0.0152	0.6077	0.0229	0.0230	11	6	-0.0087	0.0093	0.0220	0.0217		11	7	0.0357	-0.1130	0.0212	0.0215	11	8	0.0073	0.0666	0.0209	0.0210		11	9	-0.0474	0.0833	0.0213	0.0217	11	10	-0.0295	0.0158	0.0223	0.0212		11	11	0.07911	-0.0171	0.02.14	0.0234								12 12		0.04119		0.02/10			•	0 00/7	0 0000				12	1	0.0183	-8.0914	0.0236	0.0255	12	2	0.0067	-0.0279	0.6257	0.0257		12	3	0.0129	0.0426	0.02:8	0.0248	12	6	-0.0673 0.0292	-0.0379	0.0241	0.0241		12	5	-0.0569	0.0320	0.0210	0.0214	12	å	0.0092	0.0315	0.0222 0.6208	0.0219		12	9	0.0139	0.0167	0.0298	0.0207	12	10	-0.9117	-0.0266	0.0215	0.0214		13	11	0.0990	0.0039	0.0217	0.0207	12	12	0.0141	-0.0100	0.0234	0.0235		13		0.0497	0.0039	0.0209	0.0211			0.0141	0.0100	0.0209	4.0233		13	1	-0.0042	0.0142	0.0274	0.0254	13	2	0.0077	-0.0381	0.0254	0.0254		13	3	-0.0195	0.0376	0.0216	0.0246	13	4	0.0048	-0.0059	0.0239	0.0239		13	5	0.0382	0.0403	0.02.10	0.0231	13	6	-0.0242	-0.0111	0.0220	0.0220		13	7	-0.0177	0.0132	0.0213	0.0214	13	8	-0.0238	0.0222	0.0206	0.0207		13	9	-0.0176	0.0325	0.0297	0.0201	13	10	0.0350	-0.0114	0.0207	0.0204		13	11	0.0065	0.0280	0.0213	0.0213	13	12	-0.0042	0.0994	0.6215	0.0217		13	13	-0.0379	0.0633	0.0243	0.0234								1+		0.0125		0.02.4												
						THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC # THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC	14		0.0222	0.0077	0.0244	8.0244	14	2	-0.0426	-0.0187	0.0243	9.0248		-------	-----	---------	----------	---------	---------	-----	-----	---------	----------	---------	---------		14	3	0.0089	0.0050	0.02:14	0.0234	14	4	-0.0006	-0.0232	0.0226	0.0228		14	5	0.0141	-0.0087	0.0273	0.0219	14	6	-0.0051	0.0039	0.0210	8 9216		14	7	0.0316	-0.0149	0.0179	0.0199	14	a	-0.0301	-0.0200	0.0194	0.0194		14	9	0.0155	0.0437	0.01119	0.0100	14	10	0.0234	-0.0040	0.0191	6.0188		11	11	0.0327	-0.01135	0.0191	0.0190	14	12	0.0016	-0.0238	0.0199	0.0202		14	1:3	0.0382	0.0395	0.0273	0.0203	14	14	-0.0176	0.0132	0.0223	0.0223		15		-0.0020		0.0215									15	1	0.0331	0.0000	0.02(0)	0.0248	15	2	0.0047	0.0(83	3.024.2	0.0342		15	3	0.0459	0.0463	0.0215	0.0236	15	4	0.0032	-5 0172	6.4229	6.0229		15	5	0.0095	0.0159	0.0221	0.0221	13	6	-0.0071	. 9269	0.0213	0.0213		15	7	0.0611	0.0147	0.0205	0.0205	15	B	-0.0427	0.0223	0.0197	0.0196		15	9	0.0026	-0.0038	0.0193	0.0194	15	10	-0.02/2	0.0000	0.0190	0.0189		13	11	-0.0061	0.01611	0.0193	0.0192	13	12	-0.0155	0.0697	0.0.94	0.0195		13	1:3	-0.0200	0.0173	0.0295	0.0203	15	14	0.0136	-0.0215	0.0207	0.0206		15	13	-0.0285	0.0996	0.0228	0.0223								14		0.0294		0.0213									16	1	-0.0009	0.0144	0.0214	0.0254	16	4	-0.0090	0.0008	9 0236	0.0236		16	3	-0.0236	0.0212	0.0237	0.0238	16	4	0.0350	0.06111	6.0228	0.0228		16	5	-0.0113	0.0219	0.0222	0.0222	16	6	0.0003	-0.0307	6.0215	0.0215		16	7	-0.0160	-0.0078	0.0207	0.0208	16	a	-0.0517	0.0340	0.0201	0.0200		16	9	-0.0037	-0.0393	4410.0	0.0193	16	10	-0.0025	-0.0115	0.0194	0.0193		10	11	0.0074	-0.0126	0.0172	0.0188	16	12	0.0190	-0.0011	0.0195	0.0193		14	13	0.0000	0.0160	0.0201	0.0193	16	14	-0.0046	-0.0248	0.0207	0.0206		16	15	-0.0111	-0.0350	0.0213	0.0203	16	16	-0.0179	-0.01119	0.6228	0.0228		17		0.0029		0.0173									17	1	0.0064	0.0281	0.0237	0.0267	17	2	-0.0422	0.0199	0.0200	0.0200		17	3	0.0081	-0.0186	0.0214	0.0255	17	4	-0.0195	0.0282	9.0214	0.0214		17	5	-0.0184	0.0109	0.0228	0.0220	17	6	-0.0230	-0.9373	0.0212	0.0212		17	7	0.0223	-0.0230	0.0211	0.0211	17	8	0.0219	-0.0113	0.0201	0.0201		17	9	-0.0202	-0.0377	0.0116	0.0199	17	10	-0.0162	0.0155	0.0193	0.0193		17	11	0.0003	0.0029	0.0195	0.0190	17	12	-0.0168	0.0015	6.0191	0.0190		17	13	0.0191	0.0111	0.02 18	0.0184	17	14	-0.0120	0.0201	0.0198	0.0199		17	15	0.0167	0.0181	0.0223	0.0192	17	16	-0.0118	0.0139	0.0210	0.0210		17	17	-0.0321	0.0069	0.0228	0.6227								181		0.0102		0.0300									181	1	-0.0251	-0.0419	0.0138	0.0138	18	2	-0.0057	0.0033	8.0308	0.0308		183	3	-0.0093	-0.0084	0.0119	0.0120	18	4	0.00113	0.0069	0.0286	0.0206		111	5	0.0032	0.0156	0.0140	0.0160	10	6	0.0199	-0.0010	0.0244	0.0244		181	7	-0.00++	-0.0023	0.0110	0.0191	18	8	0.0298	-0.0058	6.0211	0.0211		111	9	0.0071	0.0099	0.0172	0.0194	18	10	0.0246	-0.0052	0.0195	0.0195		111	11	-0.0234	-0.6098	0.0193	0.0189	18	12	0.0011	-0.0179	6.0193	0.0191		111	13	-0.0066	-0.0554	0.0214	0.0165	18	14	0.0003	-0.0205	0.0197	0.0197		111	13	-0.0442	-0.0291	0.6228	0.0163	1/1	16	0.0113	0.0123	0.0200	6.0207		115	17	0.0092	-0.0110	0.0210	0.02011	181	113	-0.0046	-0.0122	0.0290	0.0131		19		-0.0002		0.0250									1.3	1	0.0013	0.0221	0.02.15	0.0203	19	2	0.0229	-0.0107	0.0244	0.0244		19	:3	0.0023	-0.0168	0.02 19	0.0229	19	4	0.0174	-0.0095	0.0182	0.0182		1.1	5	-0.0093	0.0034	0.02 %	0.0266	19	6	0.0041	0.0157	0.0134	0.0134		19	7	-0.0015	0.0064	0.0234	0.0254	19	a	0.0230	-0.0004	0.0162	0.0162		19	9	0.0029	0.0056	0.0213	0.0217	19	10	-0.0166	-0.0116	0.01113	6.0182		19	11	0.0003	0.0092	0.0195	0.0194	19	12	-0.0011	-0.00311	0.01119	0.01117		19	13	0.0097	-0.0268	0.02 23	0.0131	19	14	0.0164	-0.0063	0.0190	0.0190		19	15	0.0030	-0.0150	0.0236	0.0146	19	16	-0.0254	0.0094	0.0198	0.0190		19	17	0.0193	-0.0076	0.02.4	0.0208	19	143	0.0363	-0.0091	0.0225	0.01811		13	10	0.01911	0.0100	0.02:1	0.0221								20		-0.0056		0.0232									20	1	-0.0138	-0.0052	0.0210	0.0210	20	2	-A.0054	0.0041	0.0223	0.0223		20	3	-0.0100	0.0076	0.0210	0.0230	20	4	-0.0033	-0.01911	0.0186	0.01116		****	5	-0.0043	0.0009	0.0226	0.0226	20	6	0.0136	0.0441	0.0214	0.0213		20	7	-0.0182	-0.0009	0.0193	6.0163	20	8	6.0063	-0.0010	0.0242	0.0242		20	9	0.0293	-0.0094	0.0112	0.0143	20	10	0.0013	0.01711	0.0219	0.0219		20	11	0.0240	0.0018	0.0170	0.0170	20	12	-0.0199	0.0098	0.0196	0.0194		20000	13	0.0033	-0.0023	0.0219	0.0139	20	14	0.0135	-0.0016	0.0100	0.01119		20	13	0.0098	-0.0093	0.02.4	0.0144	20	16	-0.0104	-0.0092	0.0193	0.0194		20	17	-0.0014	0.0074	0.0195	0.0193	20	111	-0.0110	-0.0204	0.0214	0.0190		20	19	-0.0026	0.0002	0.0203	0.0203	20	20	0.0175	0.0045	0.0214	0.0215														Table A.4: Fully Normalized Geopotential Coefficients Determined from 416 10° Mean Anomalies by Integration. All coefficients multiplied by 10° . (Error Estimates not corrected by β_n^{-1} .)	N	H	C	8	SICMA	SICMA	N	H	c	8	BICMA	SICHA		--------	----	-----------	----------	----------	-------------	-----	----	----------	--------------------	---------	---------				-403.5679		0. 14:15									400000	1	0.2284	0.0726	0.1841	0.1898	2	2	2.4380	-1.4532	0. 1450	0.1461		3		0.5031		0.0862			-				-		3	3	0.7935	1.6197	0.0696	0.0965	3	2	1.1970	-0.4740	0.0876	0.01150		3	3	0.6038	1.0197	0.0600	0.0701								4	1	-0.4561	-0.3934	0.0594	0.0593		2	0.3324	0.4237	0.0616	0.0634		4	3	0.7911	-0.4269	0.0521	0.0547	4	2	-0.2285	0.4259	0.0464	0.0438		0		0.1559		0.0437		113							5 5	1	-0.1387	-0.274H	0.0436	0.0423	5	2	0.4009	-0.1949	0.0461	0.0453		2	3	-0.2318	-0.1319	0.6446	0.6445	5	4	-0.0861	-0.0195	0.0379	0.0372		6	5	0.1026	-0.5222	0.0325	0.0334									1	0.1204	0.0476	0.0334	0.0343	6	2	0.2723	-0.3512	9.0350	0.0342		6	3	-0.0105	-0.0597	0.0364	9.9361	6	4	-0.1776	-0.4002	0.0338	6.0333		6	5	-0.3573	-0.5234	0.0270	0.0298	6	6	0.0066	-0.2309	0.0256	0.0259		7		6. 1833		0.0274									7	1	0.1994	0.0313	0.0297	0.0298	7	2	0.2866	0.1244	0.0271	0.0276		7	3	0.1613	-9.1813	0.0293	9. 0295	7		-0.1629	-0.1626	0.0293	0.0209		77777	5	-0.0312	-0.0039	0.0210	0.0271	7	6	-0.3065	0.2026	0.0228	0.0224		à		0.0152	-0.0704	9.0236	0.0207								B	1	-0.0433	0.0461	0.0244	0.0241	8	2	0.1178	0.0995	0.0237	8.0246		u	3	0.0838	-0.01" 1	0.0233	0.0231	8	4	-0.2054	0.0526	0.0257	0.0247		11	6	-0.9156	0.0338	6.0230	0.0342	8	6	-0.0826	0.1837	0.0212	0.0213		t.	7	0.0396	0.0659	0.0188	0.0103	0	0	-0.1370	0.0909	0.0182	6.0168		4		0, 1200		0.0202							_		9	1	6. 1729	-0.03110	0.0207	0.0206	9	2	0.1191	-0.0779	0.0204	0.0210		9	3	-0.1768	-0.0294	0.0201	0.0201	9	6	-6.03110	0.0524	0.0209	0.6200		9	7	-0.0560	-0.0279	0,0209	0.0221	9	B	0.0071	0.0102	0.0194	0.0194		9	9	-0.0175	0.6203	0.0151	0.0148			V. 1700	0.0102	0.0137	0.0132		10		0.0210	0.0200	0.0171									10	1	0.1146	-0.0170	0.0160	0.0183	10	2	-0.0713	-0.0372	0.0176	0.0178		10	3	-0.0330	-0.0946	8.0177	0.0178	10		-0.0593	-0.0936	0.0177	0.0171		19	5	-0.0241	-0.0129	0.0178	0.0186	10	6	-0.0521	-0.0476	0.0183	0.0103		10	7	0.0787	-0.0149	0.0161	0.0161	10	10	0.0445	-0.0525 -0.0315	0.0153	6.0145		11	,	-0.0963	-0.0203	0.0158	W. 0130	10	10	0.1135	-0.0.113	6.0126	0.0132		ii	1	-0.0276	-0.0030	0.0149	0.0150	11	2	-0.0233	-0.0882	0.0161	0.0163		ii	3	-0.0729	-0.1145	0.0151	0.0149	11	4	-0.0983	-0.0003	0.0159	0.0154		11	5	0.0135	0.0071	0.6131	0.0155	11	6	-0.0115	0.0052	0.0162	0.0160		11	7	0.0358	-0.1069	0.0156	0.0154	11	n	0.0079	0.0614	0.0139	0.0133		11	9	-0.0478	0.0771	0.0131	0.0123	11	10	-0.0216	0.0163	0.0116	0.0114		11	11	0.0703	-0.0127	0.0113	0.0113																																																										
				13		-0.0305	-0.0296	0.0142	0.0131	12	2	0.0015	-0.0231	0.0138	0.0145		12	3	0.0149	0.0395	0.0136	0.0136	12	-	-0.0639	-0.0334	0.0133	0.0132		12	6	0.0544	-0.0016	0.0136	0.0142	12	6	0.0237	0.0461	0.0137	0.0135		12	7	-0.0230	0.0310	0.0144	0.0141	12	ü	0.0107	0.0244	0.0135	0.0128		12	9	0.0139	0.0162	0.0110	0.0113	12	10	-0.0072	-0.0251	0.0111	0.0111		12	11	0.0003	0.0047	0.0009	0.0101	12	12	0.0137	-0.00111	0.0101	0.0090		13		0.0461	**	0.0122							_		13		-0.6098	0.0033	0.0115	0.0121	13	2	0.0078	-0.03119	0.0116	0.0124		10	3	-0.0145	0.0359	0.0126	0.0124	13	4	0.0042	-0.0044	0.0117	0.0114		13	5	-0.0173	0.0408	0.0119	0.0121	13	8	-0.0222	0.0107	0.0123	0.0123		13	6	-0.0173	0.0302	0.0113	0.0111	13	10	0.0315	-0.0078	0.0129	0.0122		13	11	0.0029	0.0270	0.0096	0.0098	13	12	-0.6041	0.0925	0.0007	0.0089		iä	ià	-0.0374	0.0626	0.0006	0.0096		-				3.0007		14		0.8027		0.0104	3.5.5.7/6.5							THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC	14	1	0.0223	0.0101	0.0106	0.0113	14 2	-0.0476		0.0163	0.0102		-----	----	-------------------	-----------	---------	---------	-------	----------	---------	---------	---------		14	3	0.0123	0.0023	0.0114	0.0111	14 6	-0.0019		0.0107	0.9103		14	2	0.0159	-0.0101	0.0103	0.0105		-0.0004		6.0100	0.0110		14	7	0.0274	-0.0132	0.0109	0.0108	14 8			0.0111	0.0106		14		0.0162	0.0394	0.0111	0.0108	14 16			0.0097	6. 8094		14	11	0.0289	-0.0766	0.0009	6.00BB	14 12			6.0004	9.00117		14	13	0.0074	0.0240	0.0076	0.0078	14 14	-0.0108	0.0105	0.0075	0.6086		13		-0.0047 0.0203	0.0243	0.0049	0.0994	15 2	0.0053	0.0100	0.0096	0.0009		13	3	6.0407	0.0477	0.0093	6.0004		0.0037		6.6193	3.0099		15	5	0.0096	0.0144	0.0007	w. 0090	15		-0.0251	0.0005	3.0000		15	7	0.0575	0.0128	0.0008	9.6097	13 (U.0079	0.0094		15	•	0.0053	-6.0065	0.0097	0.0097	15 16			e. 0095	0.0093		15	11	-0.00-2	0.0146	0.0003	0.0001	15 13			0.0078	0.0078		15	13	-0.0215	0.0.04	0.0074	0.0077	15 14			0.006B	0.0069		15	13	-0.6242	0.0102	0.0067	0.0071				4.0000	•		14		0.0201		0. 6099								10	1	-0.0098	0.0187	0.0067	6.0071	16 2	-0.0138	0.0014	0.0094	0.0095		16	3	-0.0215	0.0213	0.0079	0.0077	16 4			0.0091	0.0040		96	3	-0.0097	0.0204	0.0083	0.0004	16 6			0.0079	0.0082		16	7	-0.0107	-0.0072	0.0089	0.00119	16 8	-0.0537		4.88BB	0.0085		16	9	-0.0017	-0.0580	0.0005	6.00BB	16 16		-0.0091	0.0087	0.0007		16	11	0.00114	-0.0150	CH00.0	0.0002	16 12	2 0.0172	-0.0044	0.0073	9.0069		16	13	-0.0001	0.0140	0.0066	0.0U72	16 14		-0.0253	6.8066	9.0667		16	15	-0.0116	-0.0367	0.0059	0.0063	16 16	-0.0225	-0.0170	0.0065	0.0059		17		0.0031		0.0090	2 27 27							17	1	0.0007	0.6262	0.0059	0.0062	17 2			0.000	0.0081		17	3	0.0168	-0.0226	6.0077	0.0075	17 4			0.0073	6.0372		17	6	-0.0204	0.0126	0.0000	6.0003	17 6			0.0067	6.0071		17	7	0.0235	-0.0245	0.0076	0.0077	17 8		-0.0147	0.0082	●.0078		17	9	-0.0191	-0.0365	0.0074	e.007U	17 10			0.0077	0.007A		17	11	-0.0018	0.0063	0.0077	0.0076	17 12			0.0072	0.0070		17	13	0.0171	0.0117	0.0034	0.0069	17 14			0.0061	0.0862		17	13	0.0191	6.0102	0.0034	0.0064	17 16	-0.6097	0.0151	0.0054	0.0654		14	11	-0.0360	0.00711	0.0056	0.0054							111		-0.0122	-0.031111	0.0038	0.0090	18 2	-0.0112	9. 9036	0.0024	0.0025		in	:	-0.0091	-0.0129	0.0092	0.0091	10		0.0004	0.0042	0.0023		111	5	0.0000	0.0177	0.0078	0.0002	10 6	0.0212	-0.0025	0.0062	0.0044		ia	7	-0.0048	-0.0022	0.0063	8.0063	in			0.0073	8.0076		113	•	0.0099	0.0114	0.0000	0.0073	10 10		-0.0047	0.006B	0.0068		14	11	-0.0192	-0.0127	0.0071	0.0069	10 12		-0.0221	0.0067	6.0067		111	13	-0.0093	-0.0360	0.0040	0.0073	18 14		-0.0223	0.0054	8.0055		111	15	-0.0470	-0.0381	0.0045	0.0063	10 10		0.0098	9.9056	0.0049		10	17	0.0073	-0.0103	0.0036	6.8045	18 16			0.0024	0.0065		19		0.0001		0.0041	•,•••							19	1	-0.0062	0.0267	0.0073	0.0075	19 :	0.0372	-0.0176	0.0044	0.0044		19	3	0.0038	-0.0275	0.0064	0.0063	19 4	0.0254	-0.0172	0.0078	0.0069		19	5	-0.0114	0.0066	0.0037	0.0039	19 6			0.0077	0.0078		19	7	0.0001	0.0031	0.0041	0.0043	19 4	0.0261	-0.0011	0.0067	0.0065		19	9	0.0047	0.0063	0.0061	0.0063	19 16		-0.0152	0.0062	0.0063		19	11	0.0028	0.0098	0.0061	0.0061	19 13			0.0063	0.0062		19	13	0.0104	-0.0292	0.0039	0.0074	19 14	0.0206	-0.0018	0.0053	0.0054		19	15	0.0000	-0.01711	0.0034	0.0058	19 16			0.0053	0.0045		14	17	0.0240	-0.0095	0.6049	0.0043	19 18	0.0427	-0.0127	0.0039	0.0046		19	19	0.0323	9.0142	0.0043	0.0045							20		-0.0117		0.0040								20	1	-0.0275	-0.0072	0.0037	0.0050	20 :		0.0030	0.0053	0.0053		20	3	-0.0166	0.0132	0.0043	0.0042		-0.0127	-0.0349	0.0069	0.0068		20	5	-0.0053	0.0008	0.0039	0.0041	20 6		0.0052	0.0054	0.0055		20	7	-0.0274	-0.0137	0.6963	0.8864	26 8			0.0032	6.0033		20	9	0.0395	-0.0134	0.0063	0.0066	20 10	-0.0006	0.0233	0.0052	0.0053		20		0.0342	0.0007	0.0036	0.0057	20 12			0.8054	0.0055		20	13	0.0033	-0.0060	0.0033	0.0071	20 14			0.6052	0.0050		20	15	0.0149	-0.0177	0.0033	9.0036	20 16		-0.8174	0.0042	0.0043		20	17	-0.0033	0.0003	0.0046	0.0041	20 11		-0.0225	0.0038	6.0043		20		-0.0033	0.0003	0.0036	0.6039	20 26	0.0262	0.0052	0.0042	0.0036																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												